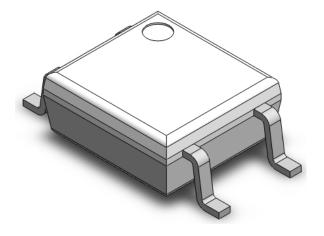


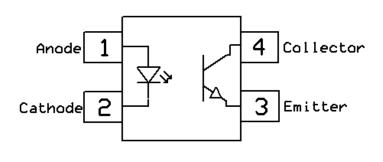
DC Input 4-Pin Phototransistor Optocoupler

Features

- High isolation 3750 VRMS
- CTR flexibility available see order information
- DC input with transistor output
- RoHS compliance
- REACH compliance
- Halogen free compliance
- Operating temperature range 55 °C to 100 °C
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950


Description

The CT451 series consists of a high power transistor optically coupled to a gallium arsenide Infrared-emitting diode in a 4-lead Mini-Flat package.


Applications

- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface

Package Outline

Schematic

Note: Different lead forming options available. See package dimension.

DC Input 4-Pin Phototransistor Optocoupler

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	3750	V _{RMS}	
Ртот	Total power dissipation	260	mW	
Topr	Operating temperature	-55 ~ +100	°C	
Тѕтс	Storage temperature	-55 ~ +150	°C	
TsoL	Soldering temperature	260	°C	
Emitter				
l _F	Forward current	80	mA	
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А	
VR	Reverse voltage	6	V	
P _D	Emitter power dissipation	150	mW	
Detector	•			
PD	Detector power dissipation	300	mW	
Bvceo	Collector-Emitter Breakdown Voltage	350	V	
B _{VECO}	Emitter-Collector Breakdown Voltage	7	V	
lc	Collector Current	100	mA	

Electrical Characteristics $T_A = 25$ °C (unless otherwise specified)

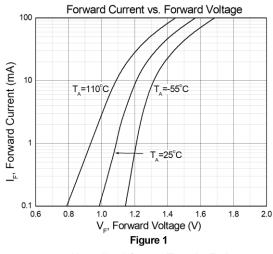
Emitter Characteristics

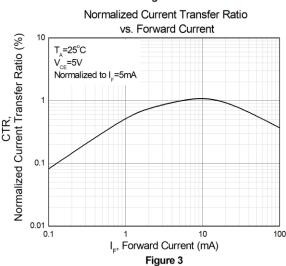
Symbol Parameters		Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F =10mA	-	1.2	1.4	V	
I _R	Reverse Current	V _R = 6V	-	-	5	μΑ	
C _{IN}	Input Capacitance	f= 1MHz	-	30	-	pF	

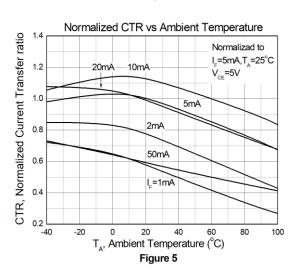
Detector Characteristics

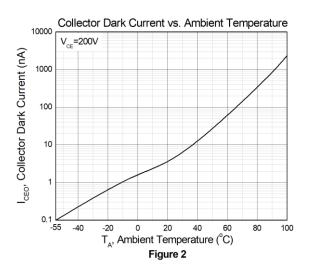
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Bvceo	Collector-Emitter Breakdown	I _C = 0.1mA	350	-	-	V	
Bveco	Emitter-Collector Breakdown	I _E = 0.1mA	7	-	-	V	
I _{CEO}	Collector-Emitter Dark Current	V _{CE} = 200V, I _F =0mA	-	-	100	nA	

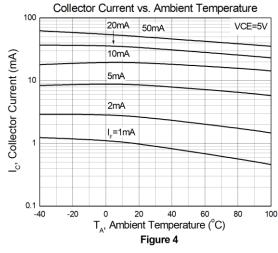
Transfer Characteristics

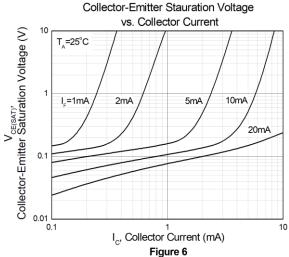

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
CTR	Current Transfer Ratio I _F = 5mA, V _{CE} = 5V		50	•	600	%	
\/a=\a\=\	Collector-Emitter Saturation	I _F = 20mA, I _C = 1mA	_		0.4	V	
V _{CE} (SAT)	Voltage	IF= 20IIIA, IC= IIIIA	_	_	0.4	V	
R _{IO}	Isolation Resistance	V _{IO} = 500V _{DC}	5x10 ¹⁰	-	-	Ω	
Cıo	Isolation Capacitance	f= 1MHz	-	0.5	1	pF	

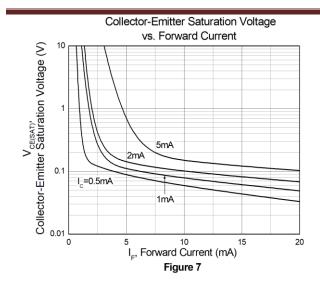

Switching Characteristics

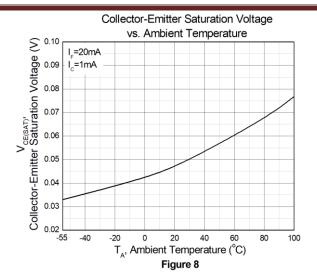

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
t _r	Rise Time	1 2mA V 2V D 1000	-	6	-	0	
t _f	Fall Time	I_{C} = 2mA, V_{CE} = 2V, R_{L} = 100 Ω	-	8	-	μS	

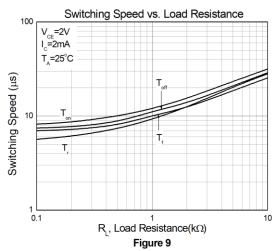



Typical Characteristic Curves

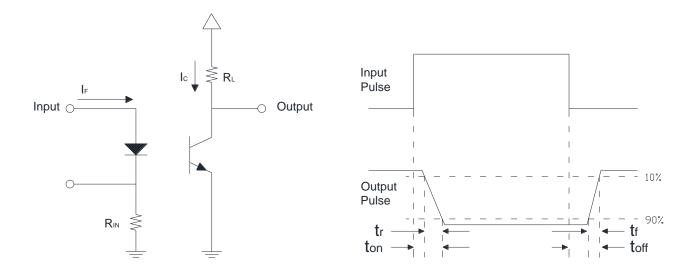








DC Input 4-Pin Phototransistor Optocoupler



Test Circuit

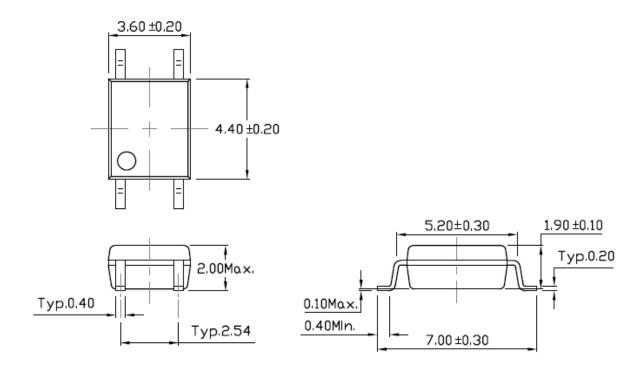
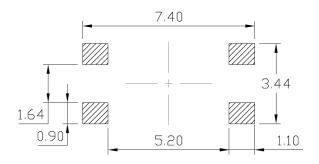


Figure 12: Switching Time Test Circuits



DC Input 4-Pin Phototransistor Optocoupler

Package Dimension Dimensions in mm unless otherwise stated

Recommended Solder Mask Dimensions in mm unless otherwise stated

Marking Information

CT 451 VYWWK

Note:

CT : Denotes "CT Micro"

451 : Part NumberV : VDE OptionY : Fiscal YearWW : Work Week

K : Manufacturing Code

Ordering Information

CT451(V)(Z)

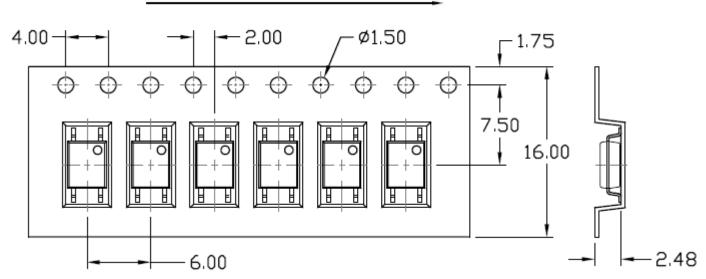
CT =Denotes "CT Micro"

451 =Part Number

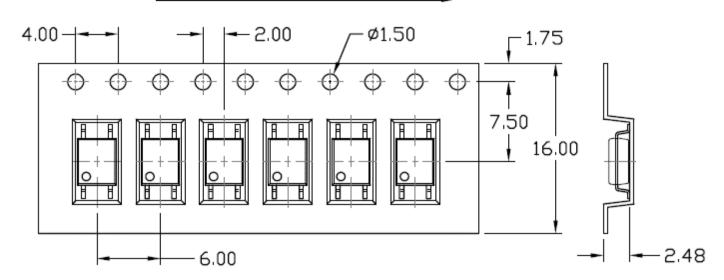
V = VDE Option (V or None)

Z = Tape and reel option (T1, T2)

Option	Description	Quantity
T1	Surface Mount Lead Forming – With Option 1 Taping	3000 Units/Reel
T2	Surface Mount Lead Forming – With Option 2 Taping	3000 Units/Reel



Carrier Tape Specifications Dimensions in mm unless otherwise stated


Option T1

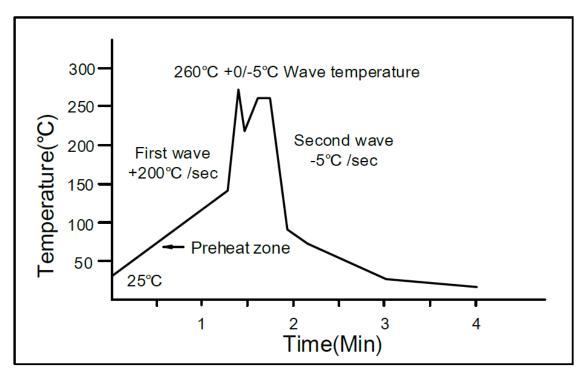
Input Direction

Option T2

Input Direction

Wave soldering (follow the JEDEC standard JESD22-A111)

One time soldering is recommended within the condition of temperature.

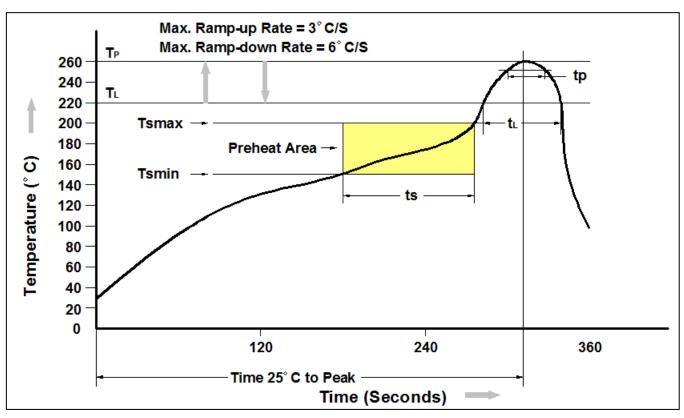

• Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature:25 to 140°C.

Preheat time: 30 to 80 sec.

•



Hand soldering by soldering iron

- Allow single lead soldering in every single process.
- One time soldering is recommended. Temperature: 380+0/-5°C
- Time: 3 sec max.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t₂)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DC Input 4-Pin Phototransistor Optocoupler

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.