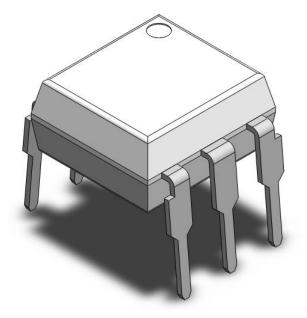


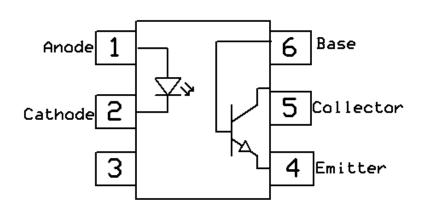
Features

- High isolation 5000 VRMS
- CTR flexibility available see order information
- DC input with transistor output
- Operating temperature range 55 °C to 110 °C
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950


Applications

- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface

Description


The 4N25, 4N26, 4N27, 4N28, 4N35, 4N36, 4N37, 4N38, H11A1, H11A2, H11A3, H11A4, H11A5 series consists of a photo transistor optically coupled to a gallium arsenide Infrared-emitting diode in a 6-lead DIP package different lead forming options.

Package Outline

Note: Different bending options available. See package dimension.

Schematic

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	5000	V _{RMS}	
Topr	Operating temperature	-55 ~ +110	°C	
Тѕтс	Storage temperature	-55 ~ +150	°C	
Tsol	Soldering temperature	260	°C	
Emitter				
l _F	Forward current	60	mA	
I _F (TRANS)	Peak transient current (≤1µs P.W,300pps)	1	А	
V_R	Reverse voltage	6	V	
P _D	Power dissipation	100	mW	
Detector		•		
P _D	Power dissipation	150	mW	
Bvceo	Collector-Emitter Breakdown Voltage	80	V	
Вусво	Collector-Base Breakdown Voltage	80	V	
B _{VECO}	Emitter-Collector Breakdown Voltage	7	V	
Вуево	Emitter-Base Breakdown Voltage	7	V	

Electrical Characteristics $T_A = 25$ °C (unless otherwise specified)

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F =10mA		1.24	1.4	V	
I _R	Reverse Current	V _R = 6V	-	-	5	μΑ	
C _{IN}	Input Capacitance	f= 1MHz	-	45	-	pF	

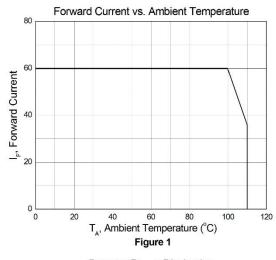
Detector Characteristics

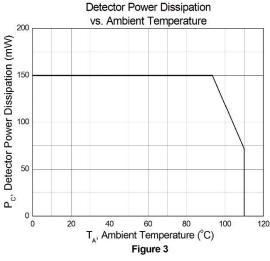
Symbol	Pa	rameters	Test Conditions	Min	Тур	Max	Units	Notes
Bvceo	Collector-Emitter E	Breakdown	Ic= 0.1mA	80	-	-	V	
Bveco	Emitter-Collector Breakdown		I _E = 0.1mA	7	-	-	V	
Вусво	Collector-Base Bro	eakdown	I _C = 0.1mA	80	-	-	V	
Вуево	Emitter-Base Brea	akdown	I _E = 0.1mA	7	-	-	V	
I _{CEO}	Collector-Emitter Dark Current	4N25,4N26,4N27,4N28 H11A1,A2,A3,A4,A5	V _{CE} = 10V, I _F =0mA	-	-	50	nA	
		4N35,4N36,4N37,4N38	Vce=60V, I _F =0mA	-	-	50	nA	
Ісво	Collector-Base Da	irk Current	V _{CB} = 10V, I _F =0mA	-	-	20	nA	

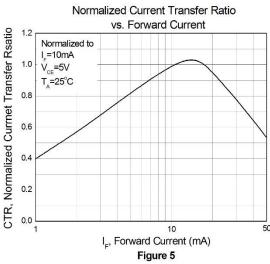
Transfer Characteristics

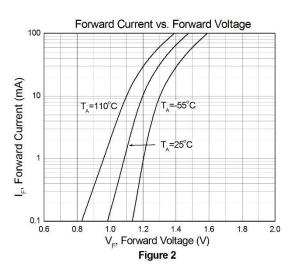
Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes	
		4N35		100	-	-			
		4N25,4N26, 4N38,	I _F = 10mA, V _{CE} = 10V		20				
	0	H11A2, H11A3				-	-		
OTD	Current	4N27, 4N28, H11A4		10	-	-	0/		
CTR	Transfer	H11A1		50	-	-	%		
	Ratio	H11A5		30	-	-			
		4N36	L 0 A)/ 5)/	130	-	260			
		4N37	$I_F= 2mA, V_{CE}= 5V$	200	-	400			
	Collector-E	4N25,4N26, 4N27,4N28	I _F = 50mA, I _C = 2mA	-	-	0.5			
	mitter	4N35,4N36,4N37		-	-	0.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
VCE(SAT)	Saturation Voltage	H11A1,H11A2, H11A3,H11A4,H11A5	I _F = 10mA, I _C = 0.5mA	-	-	0.4	V		
		4N38	I _F = 20mA, I _C = 4mA	-	-	1.0			

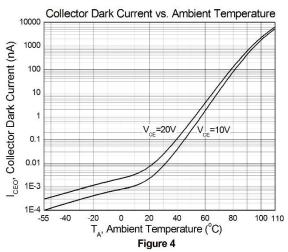
Transfer Characteristics

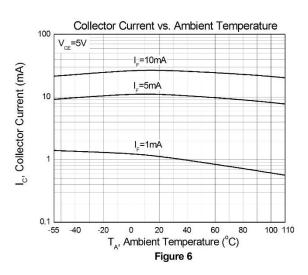

Rio	Isolation Resistance	V _{IO} = 500V _{DC}	1x10 ¹¹		Ω	
Cıo	Isolation Capacitance	f= 1MHz		0.25	pF	

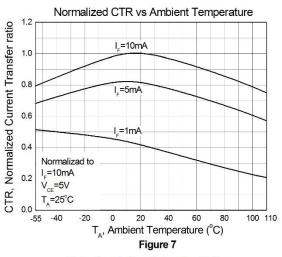

Switching Characteristics

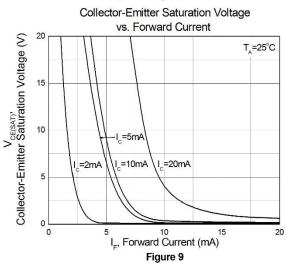

Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
		4N25,4N26,4N27,4N28	I _F = 10mA, V _{CC} = 10V, R _L =		4.3	0.0		
4	Turn On	H11A1,A2,A3,A4,A5	100Ω	-	4.3	9.8		
t _{on}	Time	4N35,4N36,4N37,4N38	$I_c= 2mA$, $V_{CC}= 10V$, $R_L=$	-	0.0	11.5	μs	
		41135,41136,41137,41136	100Ω		9.8	11.5		
		4N25,4N26,4N27,4N28	I _F = 10mA, V _{CC} = 10V, R _L =		3.9	9.8		
4	Turn Off	H11A1,A2,A3,A4,A5	100Ω	-	3.9	9.0	0	
t _{off}	Time	4N35,4N36,4N37,4N38	I _c = 2mA, V _{CC} = 10V, R _L =	-	6.9	11.5	– µs	
		41130,41130,41137,41130	100Ω			11.5		

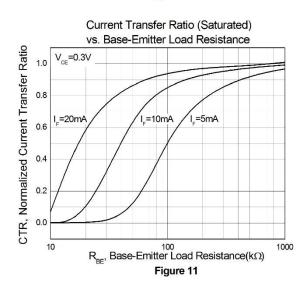


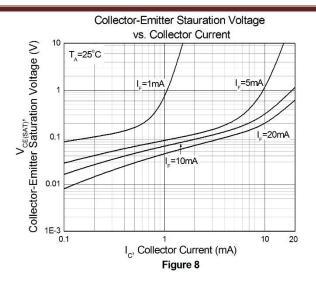

Typical Characteristic Curves

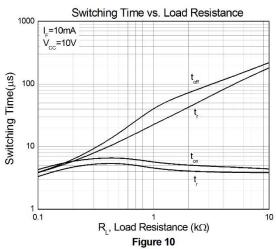


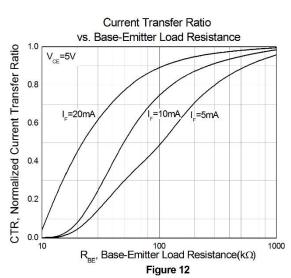


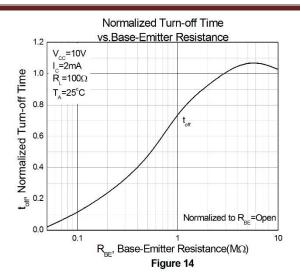


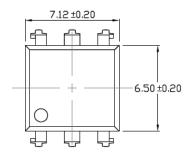


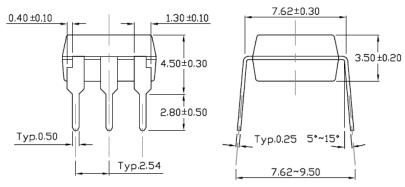


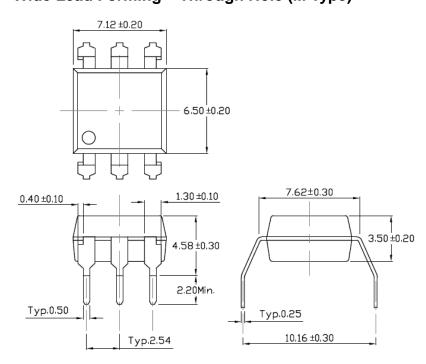




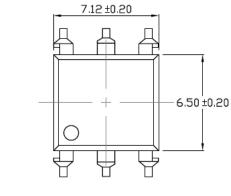


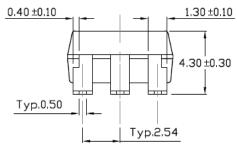


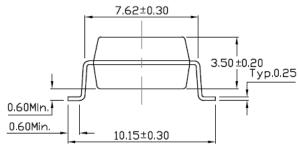


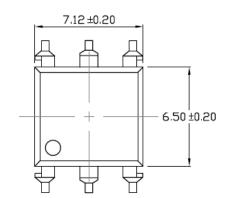

Package Dimension Dimensions in mm unless otherwise stated

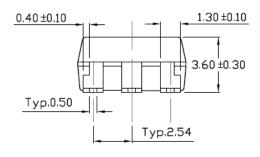
Standard DIP - Through Hole

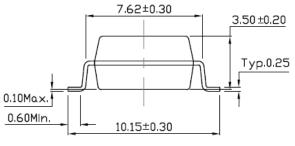



Wide Lead Forming – Through Hole (M Type)

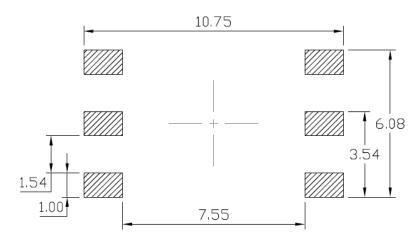


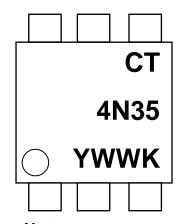

Surface Mount Forming (S Type)





Surface Mount Forming (Low Profile) (SL Type)





Recommended Solder Mask Dimensions in mm unless otherwise stated

Marking Information

Note:

CT : Denotes "CT Micro"

4N35 : Part Number
Y : Fiscal Year
WW : Work Week

K : Manufacturing Code

Ordering Information

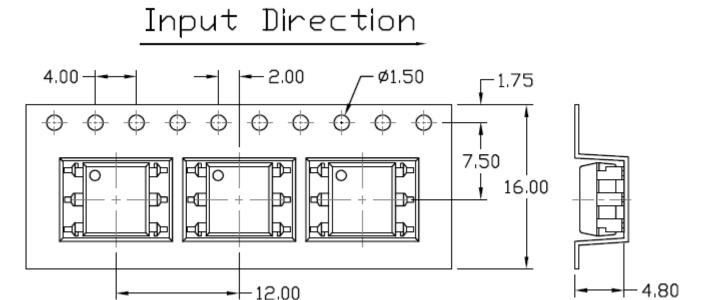
4N2X(Y)(Z)-G, 4N3X(Y)(Z)-G, H11AX(Y)(Z)-G

X = Part No.

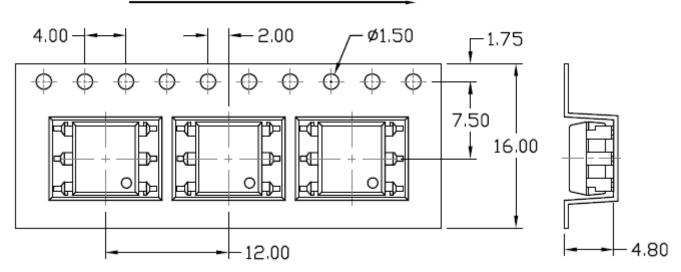
(4N25, 4N26, 4N27, 4N28, 4N35, 4N36, 4N37, 4N38, H11A1, H11A2, H11A3, H11A4, H11A5)

Y = Lead form option (S, SL, M or none)

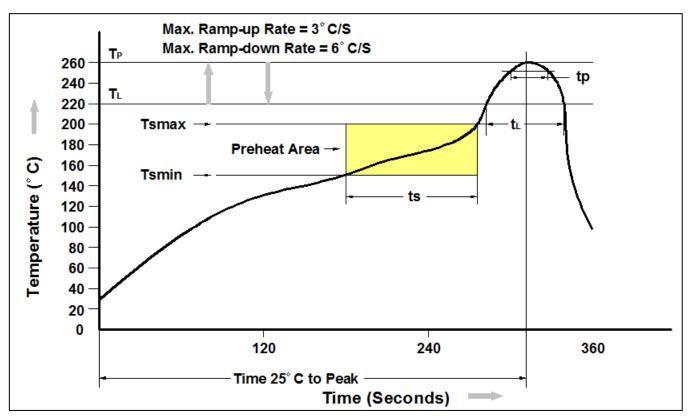
Z = Tape and reel option (T1, T2 or none)


G= Material option (G: Green, None: Non-green)

Option	otion Description	
None	Standard 6 Pin Dip	50Units/Tube
M	Wide Lead Forming	50Units/Tube
S(T1)	Surface Mount Lead Forming – With Option A Taping	1000 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option B Taping	1000 Units/Reel
SL(T1)	Surface Mount Lead Forming(Low Profile) – With Option A Taping	1000 Units/Reel
SL(T2)	Surface Mount Lead Forming(Low Profile) – With Option B Taping	1000 Units/Reel


Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option S(T1) & SL(T1)


Option S(T2) & SL(T2)

Input Direction

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (T∟)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.