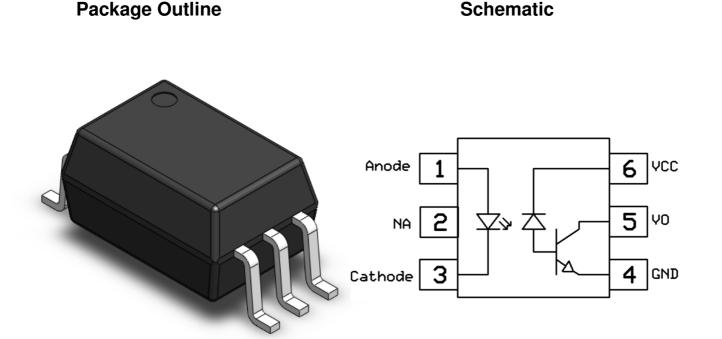


SDIP-6 1 Mbit/s High Speed Transistor Coupler

Features


- High speed 1Mbit/s
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed CTR performance from 0 °C to 70 °C
- Wide operating temperature range of -55 ℃ to 100 ℃
- Green Package
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950

Description

The CTS452 and CTS453 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate the connection for photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers the by reducing base-collector capacitance of the input transistor. The devices are packaged in a SDIP-6 package .

Applications

- Line receivers
- Telecommunication equipment
- Feedback loop in switch-mode power supplies
- Home appliances
- High speed logic ground isolation

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage *1	5000	VRMS	
Topr	Operating temperature	-55 ~ +100	٥C	
Tstg	Storage temperature	-55 ~ +125	٥C	
Tsol	Soldering temperature *2	260	°C	
Emitter				
lF	Forward current	25	mA	
I _{FP}	Peak forward current (50% duty, 1ms P.W)	50	mA	
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А	
V _R	Reverse voltage	5	V	
PD	Power dissipation	45	mW	
Detector				
PD	Power dissipation	100	mW	
IO(AVG)	Average Output current	8	mA	
IO (Peak)	Peak Output current	16	mA	
Vo	Output voltage	-0.5 to 20	V	
Vcc	Supply voltage	-0.5 to 30	V	

Electrical Characteristics

 T_A = 0 - 70 °C (unless otherwise specified). Typical values are measured at T_A = 25°C and V_{CC} =5V

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	IF = 16mA	-	1.45	1.6	V	
VR	Reverse Voltage	IR = 10µA	5.0	-	-	V	
$\Delta V_F / \Delta T_A$	Temperature coefficient of forward voltage	IF =16mA	-	-1.6	-	mV/℃	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
		I⊧=0mA, V₀=Vcc=5.5V,	-	0.001	0.5	μΑ	
		T _A =25℃		0.001			
Іон	Logic High Output Current	$I_{F}=0mA$, $V_{O}=V_{CC}=15V$,		0.01	1		
		T _A =25℃	-	0.01			
		$I_{F}=0mA, V_{O}=V_{CC}=15V$	-	-	50		
lcc∟	La sia Law Ormala Ormant	I⊧=16mA, V₀=Open,		120	200	μΑ	
ICCL	Logic Low Supply Current	V _{CC} =15V	-				
	Logic High Supply Current	IF=0mA, Vo=Open, Vcc=15V,		0.01	1		
Іссн		T _A =25℃	-	0.01			
ICCH		IF=0mA, VO=Open,	-		2	μA	
		VCC=15V	-	-	۷		

Electrical Characteristics

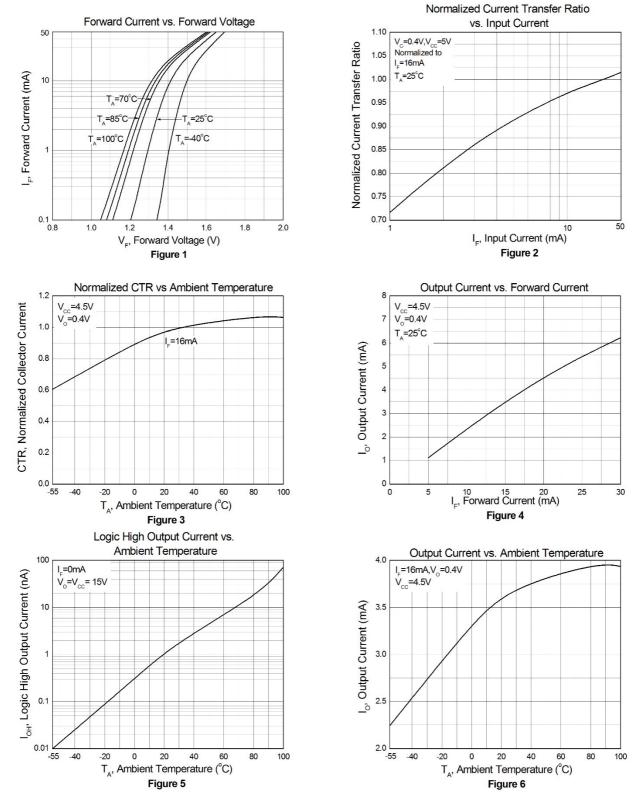
 $T_{\rm A}$ = 0 - 70 °C (unless otherwise specified). Typical values are measured at $T_{\rm A}$ = 25°C and $V_{\rm CC}{=}5V$

Transfer Characteristics

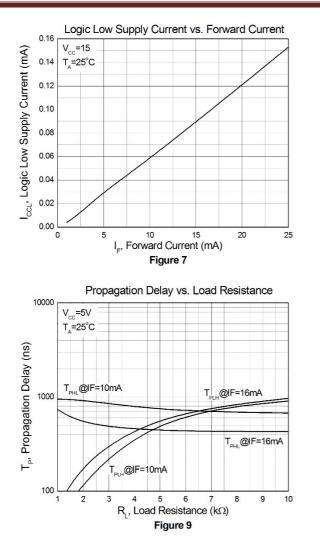
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
OTE		I _F =16mA, V _O =0.4V,	20 -		50		
	Current Transfer Ratio	V _{CC} =4.5V, T _A =25℃		50	%		
CTR	Current Transfer Ratio	I _F =16mA, V _O =0.5V,	15		-	70	
		V _{CC} =4.5V	15	-			
		I _F =16mA, I _O =3mA, V _{CC} =4.5V,	5V,		0.4		
N/		T _A =25℃		0	0.4	N	
V _{OL}	Logic Low Output Voltage	I _F =16mA, I _O =2.4mA,			0.5	- V	
		V _{CC} =4.5V	-	-			

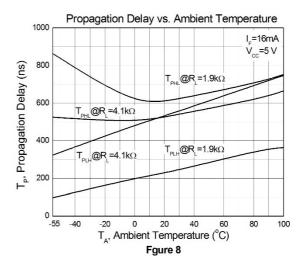
Electrical Characteristics

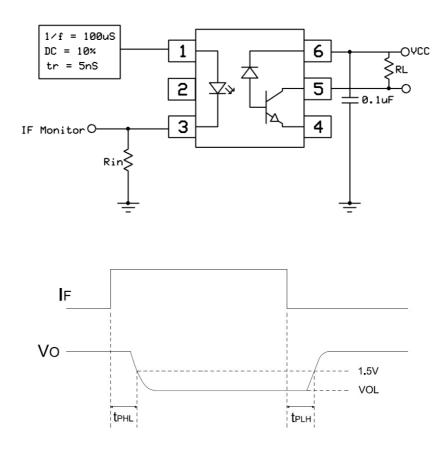
 $T_A = 0 - 70 \,^{\circ}C$ (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}C$ and $V_{CC}=5V$

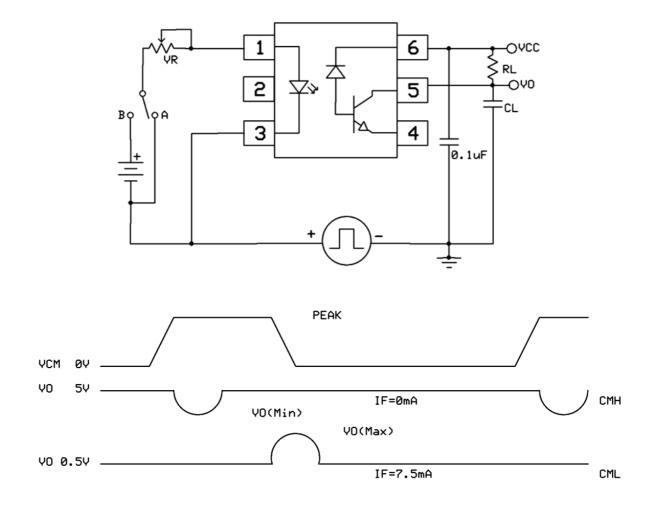

Switching Characteristics

Symbol	Parameters		Test Conditions	Min	Тур	Max	Units	Notes
	Propagation Delay Time Logic High		$I_F=16mA, R_L=1.9K\Omega,$	-	0.35	0.8	μs	
TPHL			T _A =25℃					
		to Logic Low		-	-	1.0		
			$I_{F}=16mA, R_{L}=1.9K\Omega,$		0.3			
TPLH	TPLH Propagation Delay Time L		T _A =25℃	-	0.3	0.8	μs	
	to Logic High		I _F =16mA, R _L =1.9KΩ	-	-	1.0		
	I _F = 0mA , V _{CM} =1500Vp-p,	070450	$I_{F}=0mA\;,\;V_{CM}{=}10Vp{-}p,$	5,000				
СМн		015452	R _L =1.9KΩ, T _A =25 °C		-	-	V/µs	
CIVIH		070450	$I_{F}=0mA\;,\;V_{CM}{=}1500Vp{-}p,$	15 000			ν/μs	
		15,000	-					
	Common Mode CTS452 Transient Immunity at Logic Low CTS453	079450	Iғ = 16mA , V _{СМ} =10Vp-p,	5,000				
014		013452	R∟=1.9KΩ, T _A =25 ℃		-	-		
CM∟		CTS 452	$I_F = 16mA \ , \ V_{CM} = 1500Vp\text{-}p, \label{eq:IF}$	15,000			V/µs	
		013433	R∟=1.9KΩ, T _A =25℃	15,000	-			


SDIP-6 1 Mbit/s High Speed Transistor Coupler

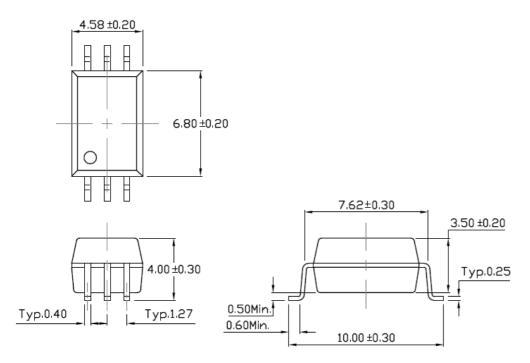

Typical Characteristic Curves

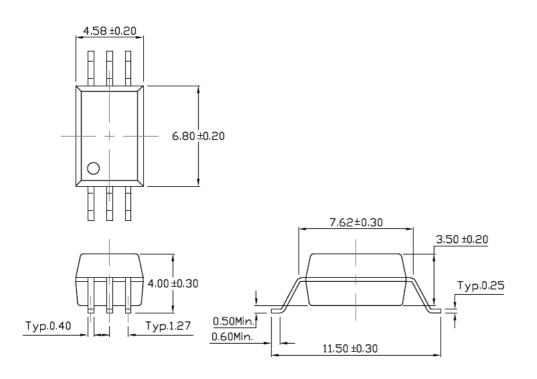

SDIP-6 1 Mbit/s High Speed Transistor Coupler


Test Circuits

Switching Time Test Circuit

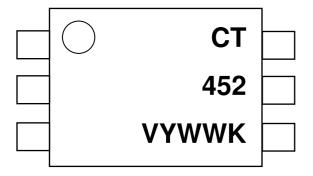
Test Circuits


CMR Test Circuit


CTS452, CTS453 SDIP-6 1 Mbit/s High Speed Transistor Coupler

Package Dimension Dimensions in mm unless otherwise stated

Surface Mount Lead Forming


Surface Mount (Gullwing) Lead Forming (M Type)

SDIP-6 1 Mbit/s High Speed Transistor Coupler

Device Marking

Note:

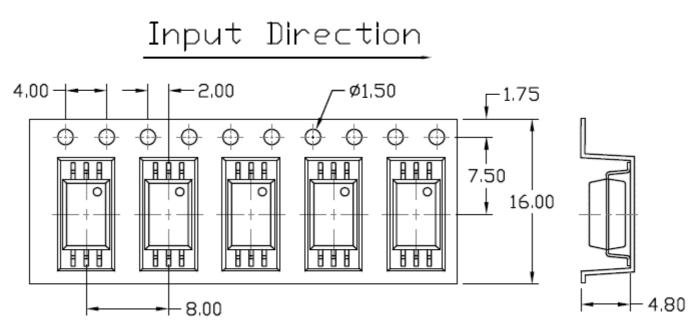
СТ	: Denotes "CT Micro"
452	: Part Number
V	: VDE Option
Y	: Fiscal Year
WW	: Work Week
К	: Manufacturing Code

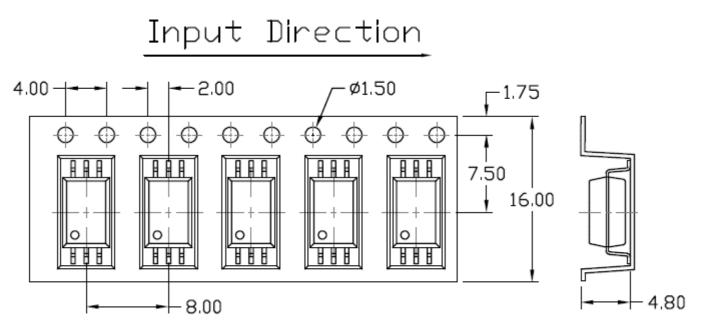
Ordering Information

CTS45X(V)(Z)

X = Part No. (X=2 or 3)

- V = VDE Option (V or none)
- Z = Tape and reel option (T1 or T2)


Option	Description	Quantity
T1	Surface Mount Lead Forming with Option 1 Taping	1500 Units/Reel
T2	Surface Mount Lead Forming with Option 2 Taping	1500 Units/Reel
(M)(T1)	Surface Mount (Gullwing) Lead Forming with Option 1 Taping	1500 Units/Reel
(M)(T2)	Surface Mount (Gullwing) Lead Forming with Option 2 Taping	1500 Units/Reel

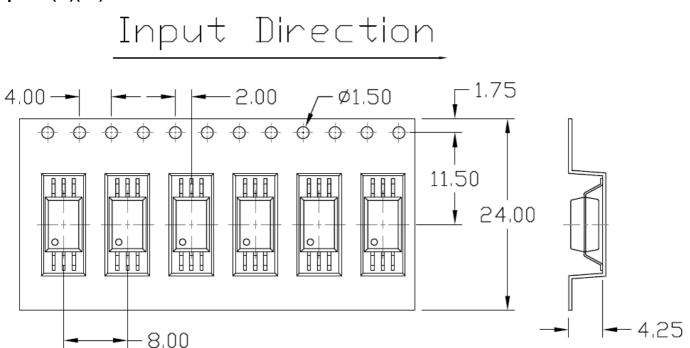

CTS452, CTS453 SDIP-6 1 Mbit/s High Speed Transistor Coupler

Carrier Tape Specifications Dimensions in mm unless otherwise stated

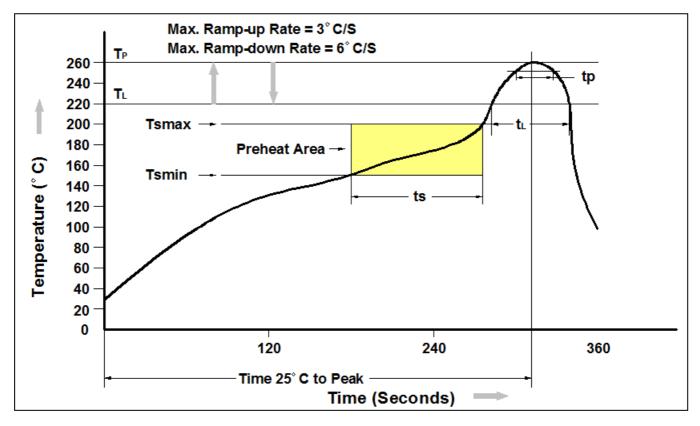
Option T1



Option T2



Option (M)(T1)



Option (M)(T2)

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150 <i>°</i> C
Temperature Max. (Tsmax)	200 <i>°</i> C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t_L to t_P)	3℃/second max.
Liquidous Temperature (TL)	217℃
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t _P) within 5 ℃ of 260 ℃	30 seconds
Ramp-down Rate $(T_P \text{ to } T_L)$	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.