

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-800480I2TZQW-T00H
APPROVED BY	
DATE	

☐ Preliminary Specification

☐ Formal Specification

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116號 4樓(東方科學園區 A棟)

TEL:886-2-26967269 , FAX:886-2-26967196 or 26967270

Approved by	Checked by	Organized by
Patrick	Simon	Mantle

This Specification is subject to change without notice.

Date: 2021/01/13 AMPIRE CO., LTD.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2021/01/13		New Release	Mantle

1. General Specifications

7 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module.

This module is composed of a 7" TFT-LCD panel, TFT driving PCBA, and backlight unit.

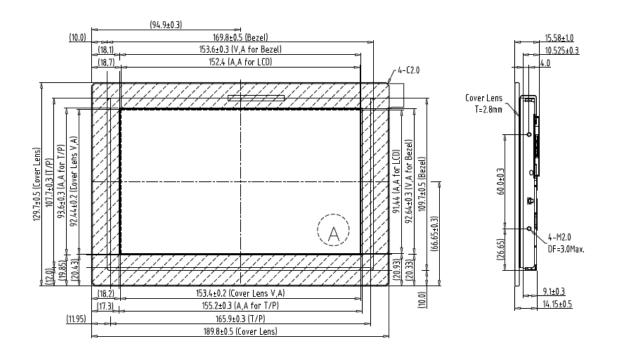
1.1 Features

(1) Construction: 7" a-Si TFT active matrix, White LED Backlight.

(2) Resolution (pixel): 800(R.G.B) X480

(3) Number of the Colors: 16.7M colors (R, G, B 8 bit digital each)

(4) LCD type: Transmissive, normally Black


(5) Interface: LVDS

(6) Projective: Capacitive Touch:

a. Touch controller: ILI2132 (ILITEK),b. Interface : USB(default) , UART

1.2 Product Summary

NO	Item	Specification	Remark
1	LCD Size	7.0 inch (Diagonal)	
2	Resolution	800 x 3 (RGB) x 480	
4	Pixel pitch	0.1905 (W) x 0.1905(H) mm	
5	Active area	152.4(W) x 91.44(H) mm	
7	Color arrangement	RGB-stripe	
8	Luminance	850 cd/m2	cd/m ²

2. Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remakes
Supply Voltage	V_{DD}	-0.3	3.6	V	-
Supply Voltage	V_{LED}	-0.3	15	V	
Input Voltage of Logic	Vı	-0.3	V _{DD+0.3}	V	Note 1
DIM frequency Input Voltage	VPDIM	-0.3	7	V	
Operating Temperature	T _{OP}	-30	70	$^{\circ}\!\mathbb{C}$	Note 2
Storage Temperature	T _{ST}	-30	80	$^{\circ}\! \mathbb{C}$	Note 2

- Note 1: The rating is defined for the signal voltages of the interface such as CLK and pixel data pairs.
- Note2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:

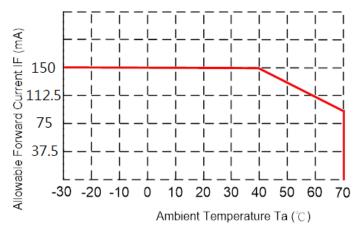
 - -Operating under high temperature will shorten LED lifetime.

3. Electrical Characteristics

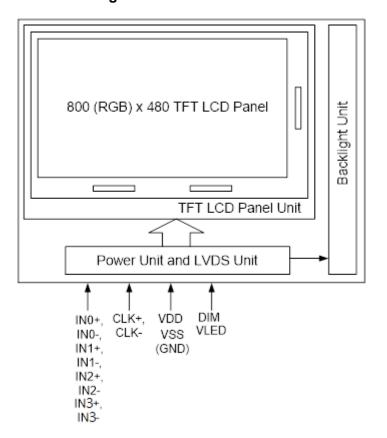
3.1 Recommended Operating Condition

Item		Symbol	Min.	Тур.	Max.	Unit	Note
LCD Supply Volta	ige	V_{DD}	3.0	3.3	3.6	V	-
LCD Supply Curre	ent	I _{DD}	-	180	-		(1)
Power Supply Voltag	ge For	VL	10.8	12.0	13.2	V	(1) 100%duty
Power Supply Current For LED Driver		I _{LED}	-	(330)		mA	VLED=12V 100%duty
DIM frequency	,	f_{PWM}	100	500	1000	Hz	Note2
Dooldight ON OFF	HIGH	BLEN	2.5		VL	V	
Backlight ON-OFF	LOW		0		0.4	V	
DIM frequency Input	HIGH	Veen	2.5		5.5	V	
Voltage	LOW	VPDIM	0		0.3	V	
LVDS RECEIVER DC SPECIFICATIONS							
Differential Input High Threshold		VTH	-	-	+100	mV	VOC=+1.2V
Differential Input L Threshold	LOW .	VTL	-100	-	-	mV	VOC=+1.2V

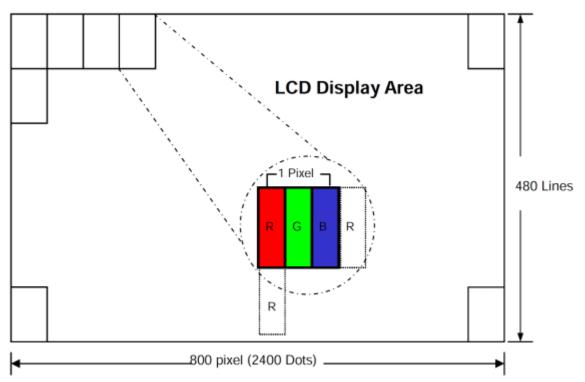
Note1: Ta=25°C, Display pattern: All White


Date: 2021/01/13

Note2: Dimming function can be obtained by PWM signal from the display CN2. The recommended PWM signal is 100Hz~1000Hz.

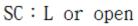

3.2 Recommended Driving Condition for Backlight

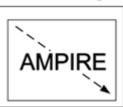
Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Forward Current	IF		150		mA	Ta=25°C
LED Famurand Valtage	\/⊏		0.4		V	IF=150mA,
LED Forward Voltage	VF		21			Ta=25°C
LED life time			400000		1.1	IF=150mA,
			100000	-	Hr	Ta=25°C

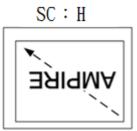

- The constant current source is needed for white LED back-light driving.
- When LCM is operated over 40°C ambient temperature, the IF should be follow :

3.3 Block Diagram

3.4 Pixel format




4. Input/Output Terminals


LVDS: CN1

Item	Description
Manufacturer / Type	20186-020E-11F(I-PEX0) or FI-SEB20P-HFE(JAE)
Mating Receptacle / Type (Reference)	20197-*20U-F(I-PEX) or FI-S20S[for discrete Wire] , FI-SE20ME[for FPC](JAE)

Pin No.	Symbol	Function
1	VDD	POWER SUPPLY:3.3V
2	VDD	POWER SUPPLY:3.3V
3	VSS(GND)	Power Ground
4	VSS(GND)	Power Ground
5	INO-	Transmission Data of Pixels
6	IN0+	Transmission Data of Pixels
7	VSS(GND)	Power Ground
8	IN1-	Transmission Data of Pixels 1
9	IN1+	Transmission Data of Pixels 1
10	VSS(GND)	Power Ground
11	IN2-	Transmission Data of Pixels 2
12	IN2+	Transmission Data of Pixels 2
13	VSS(GND)	Power Ground
14	CLK-	Sampling Clock
15	CLK+	Sampling Clock
16	VSS(GND)	Power Ground
17	IN3-	Transmission Data of Pixels 3
18	IN3+	Transmission Data of Pixels 3
19	NC	No connection
20	SC	Horizontal/Vertical display mode select signal

Date: 2021/01/13 AMPIRE CO., LTD.

Backlight driving:

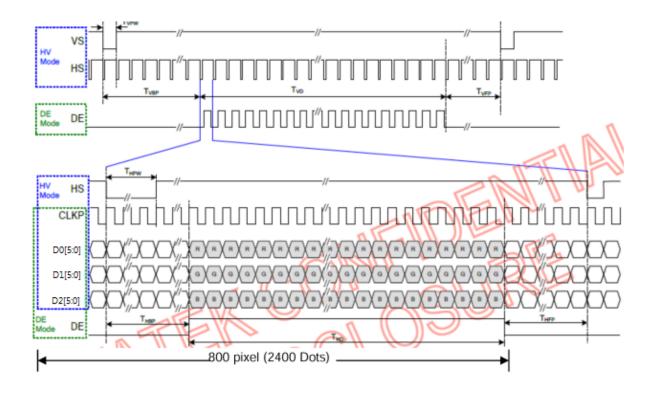
Date: 2021/01/13

CN4:

Item	Description		
Manufacturer / Type	FI-S6P-HFE(JAE)		
Mating Receptacle / Type (Reference)	FI-S6S(JAE)		

Pin No.	Symbol	Function				
1	VL	Power supply of LED driving circuit				
2	VL	Power supply of LED driving circuit				
3	GNDL	Power Ground				
4	GNDL	Power Ground				
5	BLEN	LED Enable Pin (High: enable, Low: disable)				
6	VPDIM	Adjust the LED brightness by PWM				

5. Timing Chart


5.1 TFT-LCD Input Timing

HV mode for 800x480

Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	FCLK	25.2	25.4	35.7	MHz
Horizontal display area	THD		800		CLK
HS period time	H	860	864	974	CLK
HS pulse width	T _{HPW}	1	2	40	CLK
HS back porch	T_{HBP}		32	•	CLK
HS front porch	T_{HFP}	28	32	142	CLK
Vertical display area	T_VD		480	•	Н
VS period time	T_V	488	490	611	Н
VS pulse width	T_VPW	1	2	20	Н
VS back porch	T_{VBP}		5		Н
VS front porch	T_{VFP}	3	5	126	Н

DE mode for 800x480

Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	F _{CLK}	25.2	25.4	35.7	MHz
Horizontal display area	T_{HD}		800	•	CLK
HS period time	T _H	860	864	974	CLK
HS blanking	T _{HFP} + T _{HBP}	60	64	174	CLK
Vertical display area	T_{VD}		480		Н
VS period time	T _V	488	490	611	Н
VS blanking	T _{VBP} + T _{VFP}	8	10	131	Н

5-2 LVDS Signal

switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{su}	Setup time, D0–D20 to CLKOUT↓	O - 0 - F C Figure F	5			ns
t _h	Data hold time, CLKOUT↓ to D0–D20	C _L = 8 pF, See Figure 5	5			ns
t(RSKM)	Receiver input skew margin§ (see Figure 7)	$t_C = 15.38 \text{ ns } (\pm 0.2\%),$ Input clock jitter < 50 ps¶,	550	700		ps
t _d	Delay time, CLKIN↑ to CLKOUT↓ (see Figure 7)	V _{CC} = 3.3 V, t _c = 15.38 ns (±0.2%), T _A = 25°C	3	5	7	ns
t _{en}	Enable time, SHTDN to phase lock	See Figure 7		1		ms
t _{dis}	Disable time, SHTDN to off state	See Figure 8		400		ns
t _t	Transition time, output (10% to 90% t _r or t _f) (data only)	C _L = 8 pF		3		ns
t _t	Transition time, output (10% to 90% t_Γ or t_f) (clock only)	C _L = 8 pF		1.5		ns
t _W	Pulse duration, output clock			0.50 t _C		ns

PARAMETER MEASUREMENT INFORMATION

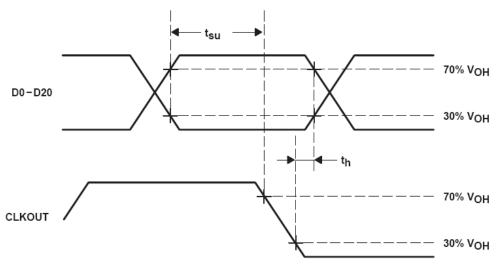


Figure 5. Setup and Hold Time Waveforms

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. § The parameter $t_{(RSKM)}$ is the timing margin available to allocate to the transmitter and interconnection skews and clock jitter. The value of this parameter at clock periods other than 15.38 ns can be calculated from t_{RSKM} = $t_{C}/14 - 550$ ps.

 $[\]P$ [Input clock jitter] is the magnitude of the change in input clock period.

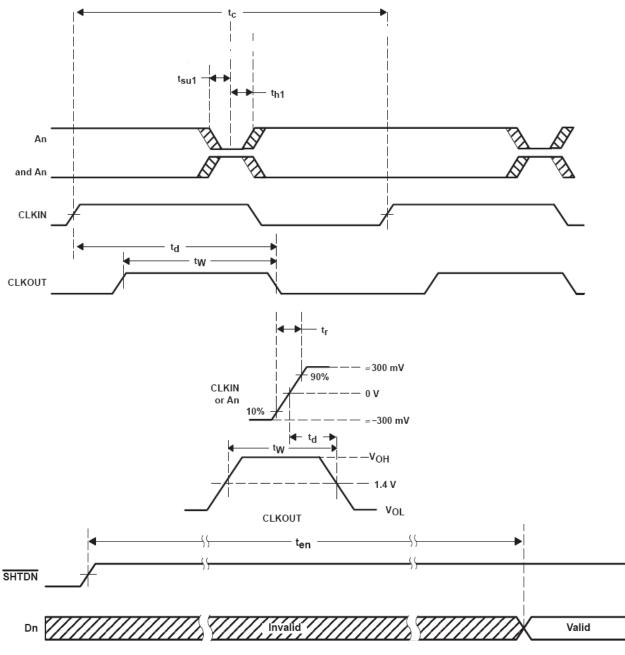


Figure 7. Enable Time Waveforms

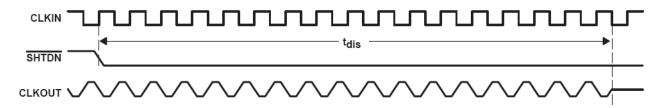
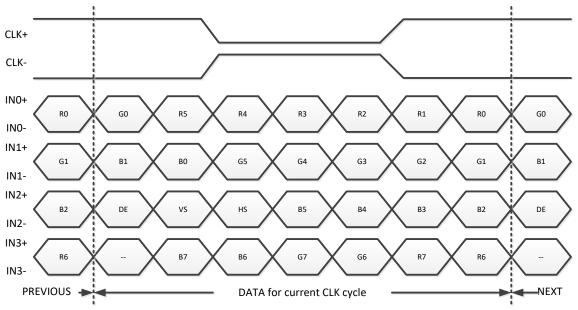
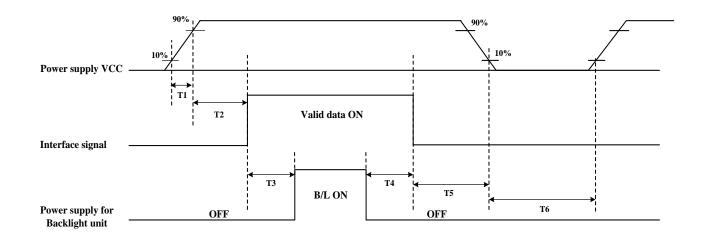



Figure 8. Disable Time Waveforms


8-BITS LVDS Input Data Format

Note: R/G/B data 7: MSB. R/G/B data 0: LSB

	: MSB, R/G/B data 0: LSB	
Signal Name	Description	Remark
R7	Red Data 7 (MSB)	
R6	Red Data 6	
R5	Red Data 5	Red-pixel Data
R4	Red Data 4	Each red pixel's brightness data consists of
R3	Red Data 3	these 8 bits pixel data.
R2	Red Data 2	triese o bits pixel data.
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Date 7 (MSB)	
G6	Green Date 6	
G5	Green Date 5	Green-pixel Data
G4	Green Date 4	Each green pixel's brightness data consists of
G3	Green Date 3	these 8 bits pixel data.
G2	Green Date 2	lilese o bits pixel data.
G1	Green Date 1	
G0	Green Date 0 (LSB)	
B7	Blue Data 7 (MSB)	
B6	Blue Data 6	
B5	Blue Data 5	Blue-pixel Data
B4	Blue Data 4	Each blue pixel's brightness data consists of
B3	Blue Data 3	these 8 bits pixel data.
B2	Blue Data 2	these oblis pixel data.
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
CLK+	LV/DC Clock lands	
CLK-	LVDS Clock Input	
DE	Display Enable	
VS	Vertical Sync Signal	
HS	Horizontal Sync Signal	

5.3 POWER ON/OFF SEQUENCE

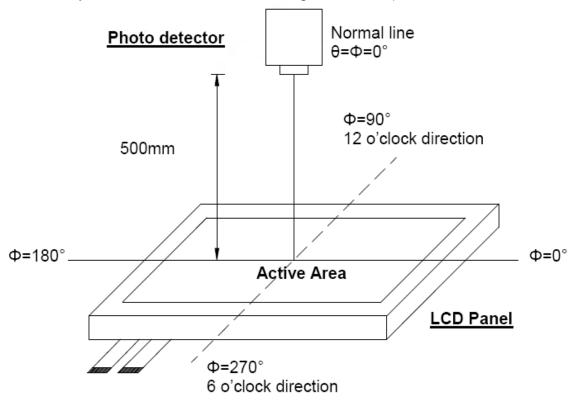
Parameter		Unit		
1 arameter	Min.	Typ.	Max.	Oiiit
T1	1	-	2	[ms]
T2	0	60	100	[ms]
Т3	200	-	-	[ms]
T4	200	-	-	[ms]
T5	1	-	-	[ms]
T6	1000	1	-	[ms]

6. Optical Characteristics

Item		Symbol	Conditio	Min	Тур	Max	Unit	Remark	
	\ <i>C</i>			70	85	-		Note 2	
\/iavy\Ammlaa			CR≧10	70	85	-	Dograd		
View Angles		θL	CR≦10	70	85	-	Degree	Note 2	
		θR		70	85	-			
Contrast Ratio	1	CR	θ=0°	800	1000	-		Left/right 0° Top/bottom 5°	
Response Tim	е	$T_{ON+}T_{OFF}$	25 ℃	-	25	35		Note1 Note4	
	\^/b:4a	х			0.328				
	White	у				0.347			
	Dad	x y			0.615	Typ+0.05	116		
Chromoticity	Red			T 0.05	0.321			Note5	
Chromaticity	Green	Х		Тур-0.05	0.310			Note1	
	Green	у			0.563				
	Blue	Х			0.136				
	Diue	у			0.098				
Uniformity		U		70		-	%	Note1 · Note6	
Luminance		L		680	850	-	cd/m²	Note7	

Test Conditions:

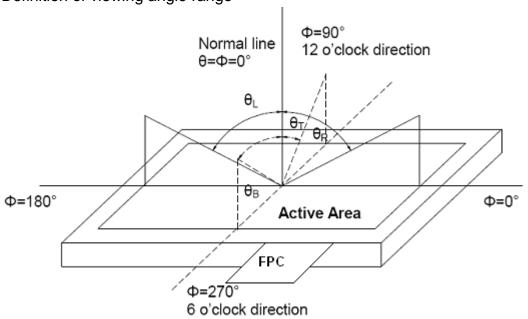
Date: 2021/01/13


- 1. $I_F= 150 \text{mA}$, the ambient temperature is $25 ^{\circ}\text{C}$.
- 2. The test systems refer to Note 1 and Note2.

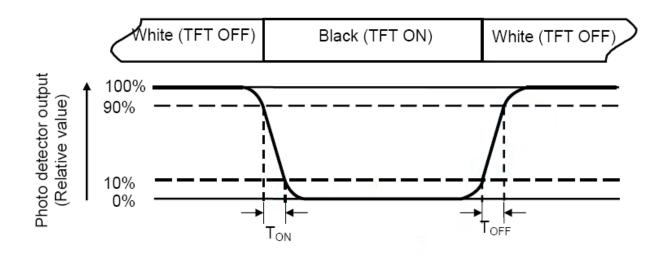
Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 10 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 1: Definition of optical measurement system.


The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

Note


16

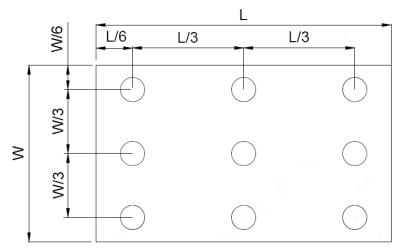
2: Definition of viewing angle range

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Toff) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

Note 5 : Definition of color chromaticity (CIE1931)


Color coordinated measured at center point of LCD.

Note 6 : All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity

Date: 2021/01/13

Active area is divided into 9 measuring areas (Refer to bellow figure). Every measuring point is placed at the center of each measuring area.

B_{max}: The measured maximum luminance of all measurement position. B_{min}: The measured minimum luminance of all measurement position.

7. Projective Capacitive Touch Panel:

7.1 Basic Characteristic

ITEM	SPECIFICATION
Type	Projective Capacitive Touch Panel
Activation	Max 10-fingers or Single-finger
X/Y Position Reporting	Absolute Position
Touch Force	No contact pressure required
Calibration	No need for calibration
Control IC	ILITEK ILI2132
Interface	USB

7.2 Electrical Absolute Max Rating

ltom	Symbol	Values		UNIT	Note	
Item	Symbol	Min.	Max.	UNIT	Note	
Power Supply voltage	VDD	-0.3	5.5	V	GND =0V	

7.3 Electrical Characteristics

Specify the normal operating condition (GND=0V)

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	VDD	1	5.0	1	V	
Power Consumption	l vdd		50	(200)	mA	1

Note 1 Reference only.

7.4 Interface

Date: 2021/01/13

CN3

Item	Description
Manufacturer / Type	SM12B-SHLS-TF(LF)(SN)(JST)
Mating Receptacle / Type (Reference)	SHLP-12V-S-B(JST)

Pin No.	Symbol	Function
1	VDD5	No connection
2	CKW	No connection
3	SC	No connection
4	GND	GND
5	DIN	No connection
6	DOUT	No connection
7	TEST1	No connection
8	TEST2	No connection
9	RESET	No connection
10	D-	USB Data-
11	D+	USB Data+
12	VUSB	Power supply 5.0V

8. Reliability Test Items

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-30±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	40°C, 85% RH , 240 hrs	1,2
Thermal Shock Test	-30°C (30min) ~ 85°C (30min) 50 cycles	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

- Note 1: Condensation of water is not permitted on the module.
- Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).
- Note 3: The module shouldn't be tested more than one condition, and all the test conditions are independent.
- Note 4: All the reliability tests should be done without protective film on the module.

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9. General Precautions

9-1 Safety

Liquid crystal is poisonous. Do not put it your month. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

9-2 Handling

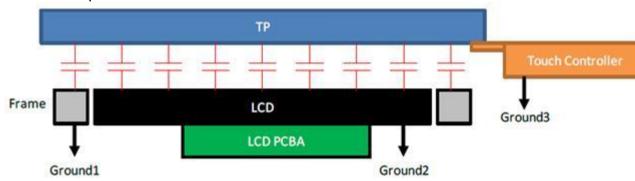
- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
- 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

9-3 Static Electricity

- 1. Be sure to ground module before turning on power or operation module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

9-4 Storage

- Store the module in a dark room where must keep at +25±10[°]C and 65[°]RH or less
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.

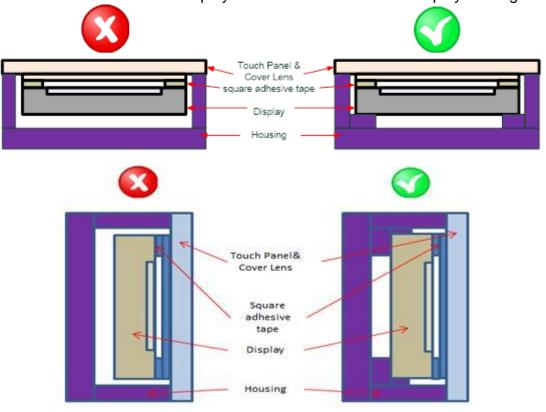

9-5 Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

9-6 Others

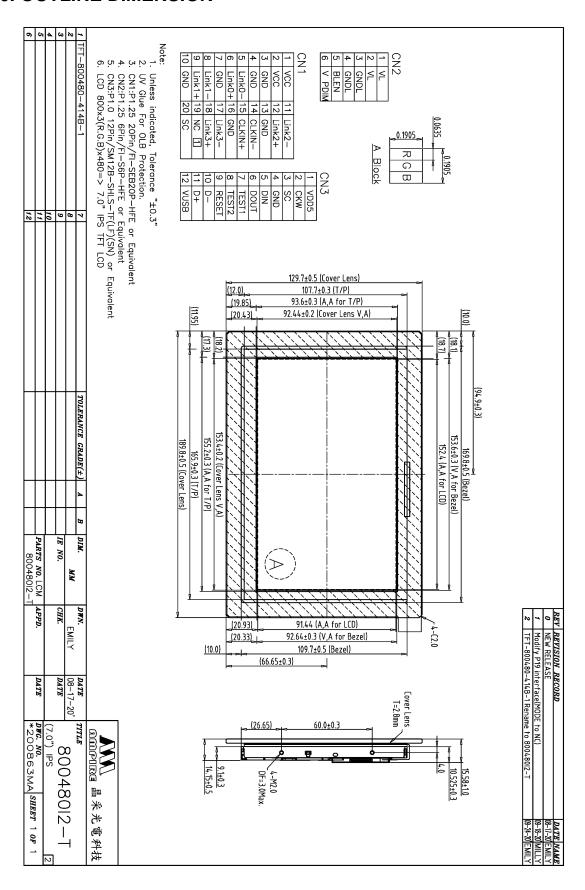
- 1.Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 2. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

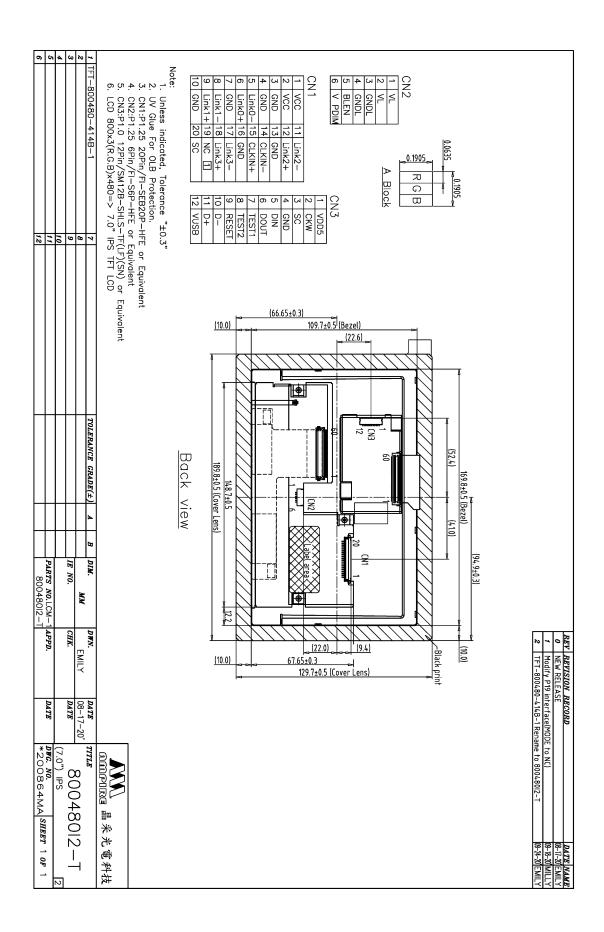
3. TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.



GND1, GND2 and GND3 should be connected together to have the same ground

9-7 Mechanism


Date: 2021/01/13


1. The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.

23

10. OUTLINE DIMENSION

