

SPECIFICATIONS FOR LCD MODULE

CUSTOMER			
CUSTOMER PART NO.			
AMPIRE PART NO.	AM-480800D1TZQW-00H		
APPROVED BY			
DATE			

□ Approved For Specifications □Approved For Specifications & Sample

AMPIRE CO., LTD. Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist, New Taipei City 221, Taiwan (R.O.C.) 新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Revision Date	Page	Contents	Editor
2015/05/21	-	New Release	Kokai
			7
		$(0)^{\vee}$	
		Co	
	\nearrow		

RECORD OF REVISION

1 Features

LCD 4.3 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) for mobile-phone or handy electrical equipments.

(1) Construction : Amorphous silicon TFT-LCD with driving system, Bezel and White LED Backlight.

- (2) LCD type : Transmissive , Normally Black.
- (3) Interface : 24BIT RGB + SPI Interface.
- (4) Driver IC : ILI9806C
- (5) Power Supply Voltage : 3.3V power input for TFT, built-in power supply circuit.
- (6) RoHS Compliance.

2 Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
Active Display Size		4.3 inch diagonal	mm
	Outline Dimension	61.96 (H) x 104.5(V) x 1.9 (T)	mm
Main Pixel pitch LCD Active area Number of Pixels		0.117 (H) x 0.117(V)	mm
		56.16 (H) x 93.6(V)	mm
		480(H)x800(V) pixels	mm

*1. This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

ltem	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage1 (I/O)	IOVCC	-0.3	+4.6	V	
Power supply voltage2 (Analog)	VCC			<	$\mathbf{\Sigma}$

3-2 Environment

Item	Specifications	Remarks
Storage	Max. +80 °C	Note 1:
temperature	Min30 °C	Non-condensing
Operating	Max. +70 °C	Note 1:
temperature	Min20 °C	Non-condensing

Note 1 : Ta \leq +40 °C · · · Max.85%RH

Ta>+40 °C $\cdot \cdot \cdot$ The max. humidity should not exceed the humidity with 40 °C 85%RH.

4 Electrical specifications

4-1 Electrical characteristics of LCM

(GND=0V, Ta=25 °C)						
Item	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Logic operation Voltage	IOVCC	1.65	1.8/2.8	3.3	V	>
Analog operation Voltage	VCC	2.6	2.8	3.2	V	
High-level input voltage	V _{IH}	0.7* IOVCC		IOVCC	V	
Low-level input voltage	V _{IL}	-0.3		0.2* IOVCC	V	
High-level output voltage	V _{OH}	0.8* IOVCC	K	IOVCC	V	IOH=-1mA
Low-level output voltage	V _{OL}	0		0.2* IOVCC	V	IOH=1mA
Power Consumption		-	99	150	mA	

4-2 LED back light	specification
--------------------	---------------

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V _f	I _f =20mA	-	(25.6)	-	V
Forward current	١ _f		-	20		mA
Uniformity (with L/G)	-	I _f =20mA	70%	-	-	
Luminous color	White					
Chip connection	8 chip serial connection					

Note: (value), value=estimate value.

5 Main LCD

5-1 Optical characteristics

(I_F=22mA. Ta = 25°C)

ltem		Symbol	Min.	Std.	Max.	Unit	Conditions
Contrast	ratio	CR	600	800	-	-	~ ~
Response	Rising	Tr	-	15	-	me	
time	Faling	Tf	-	20	-	1115	
White luminance (center of screen)		ΥL	200	250	-	cd/m2	0-0°
	Dod	Rx	0.587	0.637	0.687		0-0°
	Reu	Ry	0.308	0.358	0.408		$\Phi=0$
Color	Croop	Gx	0.264	0.314	0.364		Normal
chromaticity	Green	Gy	0.540	0.590	0.640		viewing angle
	Blue	Bx	0.102	0.152	0.202	1	
(CIE 1931)		By	0.015	0.065	0.115		
	\\/bita	Wx	0.253	0.303	0.353		
	vvnite	Wy	0.275	0.325	0.375		
	Hor	θL	75	80			
Visual angle	HUI.	θr	75	80		Degree	CR>10
	Vor	Θf	75	80	-	Degree	
	vel.	Өь	75	80	-		

Note: (value), value=estimate value.

NOTE 2: Response tome definition

NOTE 3: $\phi \cdot \theta$ definition

6:00

6 Block Diagram

Block diagram (Main LCD)

Display format:A-Si TFT transmissive, Normally Black type.Display composition:480 x RGB x 800 dotsLCD Driver:RM68050 or equivalent.

7 Interface specifications

Pin No.	Terminal	Functions				
1	GND	Ground				
2	LEDA	Power supply for LED (Anode).				
3	LEDK	Power supply for LED (Cathode).				
4	VCC	Power supply for Step-up circuit. (Typ=2.8V).				
5	IOVCC	Power supply for I/O circuit. (Typ=1.8V or 2.8V).				
6	SDO	Serial data output pin for SPI interface				
7	SDI	Serial data input pin for SPI interface				
8	GND	Ground				
9	SCL_WR	Serial clock input				
		Chip select input.				
10	CS	Low: select and accessible				
		High: not select and not accessible				
11	IM3	No Connection				
12	RESET	Switching to "L" initializes internally.				
12		Must be reset after the power is supplied.				
13~20	R0~R7	RGB interface Red Data				
21~28	G0~G7	RGB interface Green Data				
29~36	B0~B7	RGB interface Blue Data				
		Data Enable signal				
37	DE	Low: access enabled				
		High: access inhibited				
38	GND	Ground				
39	PCLK	Pixel clock signal				
40	GND	Ground				
41	HS	Line synchronizing signal				
42	VS	Frame synchronizing signal				
43	IC_ID	No Connection				
44	IFD PWM	LED PWM frequency output for LED driver control				
		Leave it open when not in use				
45	GND	Ground				

8 Timing Chart 8.1 Serial Interface

Signal	Symbol	Parameter	min	max	Unit	Description
CS	tcss	Chip select time(Write)		-	ns	
	tcsh	Chip select hold time(Read)	15	-	ns	
	tcHw	CS"H"pulse width	40	-	ns	
SCL_WR	twc	Serial clock cycle(Write)	30	-	ns	
	twrh	SCL"H"pulse width(Write)	10	-	ns	
	twrl	SCL"L"pulse width(Write)	10	-	ns	
	trc	Serial clock cycle(Read)	150	-	ns	
	trdh	SCL"H"pulse width(Read)	60	-	ns	
	trdl	SCL"L"pulse width(Read)	60	-	ns	
SDO	tacc	Access time(Read)	10	50	ns	For maximum CL=30pF For minimum CL=8pF
	toh	Output disable time(Read)	15	50	ns	
SDI	tds	Data setup time(Write)	10	-	ns	
	tdh	Data hold time(Write)	10	-	ns	

8.2 RGB Interface

Signal	Symbol	Parameter	min	max	Unit	Description
VS/HS	tSYNCS	VS/HS setup time	5	\sum	ns	
	tSYNCH	VS/HS hold time	5		ns	24/18/16-bit bus
DE	tENS	DE setup time	5		ns	
	tENH	DE hold time	5	-	ns	
DB[23:0]	tPOS	Data setup time	5	-	ns	
	tPDH	Data hold time	5	-	ns	
PLK	PWDH	PLK high-level period	13	-	ns	
	PWDL	PLK low-level period	13	-	ns	
	tCYCD	PLK cycle time	28	-	ns	
	trgbr,trgbf	PLK,HS,VS rise/fall time	-	15	ns	

VLW : VSYNC Low pulse Width HLW : HSYNC Low pulse Width DTST : Data Transfer Startup Time Pn : pixel 1, pixel 2..., pixel n.

Parameters	Symbols	Condition	Min.	тур.	Max.	Units
Frame Rate	FR		50	-	70	fps
Horizontal Low Pulse Width	HLW		5	-	80	DOTCLK
Horizontal Back Porch	HBP		10		85	DOTCLK
Horizontal Address	HACT		-	480	-	DOTCLK
Horizontal Front Porch	HFP		5	-	80	DOTCLK
Horizontal Blanking Period	HBP + HFP		60		90	DOTCLK
Vertical Low Pulse Width	VLW		2	-	4	Line
Vertical Back Porch*	VBP		4			Line
Vertical Address	VACT			800	*	Line
Vertical Front Porch	VFP		2	-		Line
Vertical Blanking Period	VBP + VFP		6			Line
Data Clock	DCLK		23.5	-	34.9	MHz

8.3 Reset Timing Shorter than 5us NRESET Display Status Normal operation Signal Symbol Parameter MRESET Normal operation Normal o

Signal	Symbol	Parameter	mm	max	Unit
RESET	tRW	Reset pulse duration	10	C	us
	tRT	Reset cancel		5(note 1,5)	ms
				120(note 1,6,7)	ms

Note:

 The reset cancel includes also required time for loading ID bytes,VCOM setting and other settings from OTP to registers. This loading is done every time when there is H/W reset cancel time (tRT) within 5 ms after a rising edge of RESET.
Spike due to an electrostatic discharge on RESET line does not cause irregular system reset according to following table.

RESET Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset stars

3.During the Resetting period, the display will be blanked(The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out mode. The display remains the blank state in Sleep In mode.) and then return to Default condition for Hardware Reset.

4. Spike Rejection also applies during a valid reset pulse as shown below:

5. When Reset applied during Sleep In Mode.

6.When Reset applied during Sleep Out Mode.

7.It is necessary to wait 5msec after releasing RESET before sending commands.Also Sleep Out command cannot be sent for 120msec.

9 QUALITY AND RELIABILITY

1. Scope

Specifications contain

- 1.1 Display Quality Evaluation
- 1.2 Mechanics Specification

2. Sampling Plan

Unless there is other agreement, the sampling plan for incoming inspection

shall

follow MIL-STD-105E LEVEL II.

- 2.1 Lot size: Quantity per shipment as one lot (different model as different lot).
- 2.2 Sampling type: Normal inspection, single sampling.
- 2.3 Sampling level: Level II.
- 2.4 AQL: Acceptable Quality Level

Major defect: AQL=0.65

Minor defect: AQL=1.0

3. Panel Inspection Condition

3.1 Environment:

Room Temperature: 25±5°C.

Humidity: 65±5% RH.

Illumination: 300 ~ 700 Lux.

3.2 Inspection Distance:

35-40 cm

3.3 Inspection Angle:

The vision of inspector should be perpendicular to the surface of the Module.

3.4 Inspection time :

Perceptibility Test Time: 20 seconds max.

10 RELIABILITY

Test Item	Test Conditions			
High Temperature Operation	70±3°C , t=72 hrs			
Low Temperature Operation	-10±3°C , t=72 hrs			
High Temperature Storage	80±3°C , t=72hrs			
Low Temperature Storage	-30±3°C , t=72 hrs			
Temperature /Humidity Storage Test	60°C, Humidity 90%, 72 hrs			
Temperature /Humidity Operation Test	40°C, Humidity 90%, 72 hrs			
Thermal Shock Test	-20°C ~ 70°C 60 min 60 min. (1 cycle) Total 20 cycle	1,2		
Vibration Test (Packing)	Sweep frequency:10~55~10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis			

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

11 USE PRECAUTIONS

11-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

11-2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

11-3 Storage precautions

1) Avoid a high temperature and humidity area. Keep the temperature between

0°C and 35°C and also the humidity under 60%.

- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.
- 11-4 Operating precautions
- Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

- 11-5 Other
- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one years warrantee for all products and three months warrantee for all repairing products.

12 MECHANICAL DRAWING

