

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-320240NTMQW-T30H -C(R)
APPROVED BY	
DATE	

- **☑** Approved For Specifications
- $\hfill\square$ Approved For Specifications & Sample

AMPIRE CO., LTD.

Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist, New Taipei City 221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Date: 2015/3/17 AMPIRE CO., LTD. 1

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2008/07/22		New Release	Emil
2009/12/18	25-26	Update Mechanical Drawing (Update pin definition)	Edward
2009/12/24	5	Add LED life time	Edward
2015/3/17	10	Add LCD life time	Patrick

1 Features

- 5.7 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 5.7" TFT-LCD panel, a driver circuit and backlight unit.
- (1) Construction: 5.7" a-Si color TFT-LCD, White LED Backlight, Touch Panel and PCB.
- (2) Resolution (pixel): 320(R.G.B) X240
- (3) Number of the Colors: 262K colors (R, G, B 6 bit digital each)
- (4) LCD type: Transmissive Color TFT LCD (normally White)
- (5) Interface: 40 pin . DE only mode support.
- (6) Power Supply Voltage: 3.3V single power input. Built-in power supply circuit.
- (7) Viewing Direction: 6 O'clock (Gray Inversion)

2 Physical specifications

Item	Specifications	Unit	
Display resolution(dot)	960 (W) x 240(H)	mm	
Active area	115.2 (W) x 86.4 (H)	mm	
Screen size	5.7(Diagonal)	mm	
Pixel size	120 (W) x 360 (H)	um	
Color configuration	R.G.B stripe		
Overall dimension	131.0(W)x102.2(H)x12.4(D)	mm	
Weight	T.B.D	mg	
Backlight unit	LED		

3 Electrical specification

Date: 2015/3/17

3.1 Absolute max. ratings

3.1.1 Electrical Absolute max. ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power voltage	VDD	VSS=0	-0.3	6.0	V	
Input voltege	V _{in}		-0.3	VDD+0.3	V	Note 1

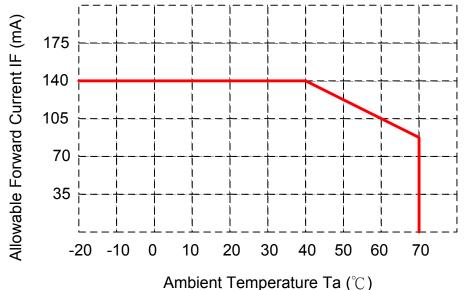
Note1:Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5

3.1.2 Environmental Absolute max. ratings

	OPER	ATING	STOF	RAGE	
Item	MIN	MAX	MIN	MAX	Remark
Temperature	-20	70	-30	80	Note2,3,4,5,6,7
Humidity	Note1		Note1		
Corrosive Gas	Not Acceptable		Not Acceptable		

Note1: Ta <= 40°C: 85% RH max

Ta > 40° C : Absolute humidity must be lower than the humidity of 85%RH at 40° C


Note2 : For storage condition Ta at -30° C < 48h , at 80° C < 100h For operating condition Ta at -20° C < 100h

Note3: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

Note4: The response time will be slower at low temperature.

Note5 : Only operation is guarantied at operating temperature. Contrast, response time, another display quality are evaluated at +25°C

Note6 : When LCM is operated over 40°C ambient temperature, the I_{LED} of the LED back-light should be follow :

Note7: This is panel surface temperature, not ambient temperature.

Note8 : When LCM be operated over than 40°C , the life time of the LED back-light will be reduced.

3.2 Electrical characteristics

3.2.1 DC Electrical characteristic of the LCD

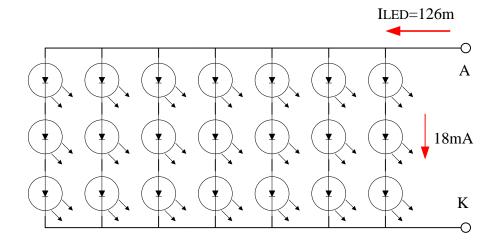
Typical operting conditions (VSS=0V)

Item	•	Symbol	Min.	Тур.	Max.	Unit	Remark
Power supply		VDD	3.0	3.3	3.6	V	
Input Voltage	H Level	V _{IH}	0.7 VDD	-	VDD	V	Note 1
for logic	L Level	V _{IL}	0	-	0.3 VDD	V	Note 1
Power Supply current		IDD		45	55	mA	Note 2

Note1: Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5

Note2: fv =60Hz , Ta=25°C , Display pattern : All Black

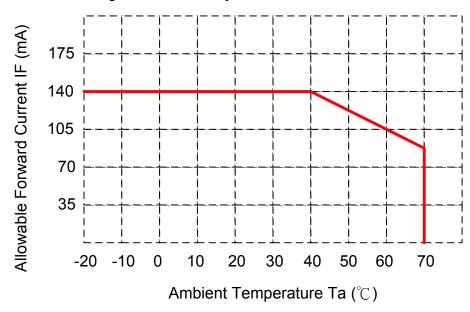
3.2.2 Electrical characteristic of LED Back-light


Paramenter	Symbol	Min.	Тур.	Max.	Unit	Condiction	
L ED voltore	\ /	0.4	0.0	0.0	10.0		I _{LED}
LED voltage	V_{AK}	8.4	9.6	10.8	V	=140mA,Ta=25°C	
LED forward ourrent	I _{LED}		126	140	mA	Ta=25°C	
LED forward current	I _{LED}		84	105	mA	Ta=60°C	
LED life time			30K		hours	Note 1	

Note 1: End of Life shall be determined by the time when any of the following is satisfied under continuous lighting at 25°C and ILED = 126mA.

- Intensity drops to 50% of the Initial Value (Min. Luminance)
- Based on LED

Date: 2015/3/17


- It is an estimative value

■ The constant current source is needed for white LED back-light driving.

When LCM is operated over 60°C ambient temperature, the $I_{\mbox{\scriptsize LED}}$ of the LED

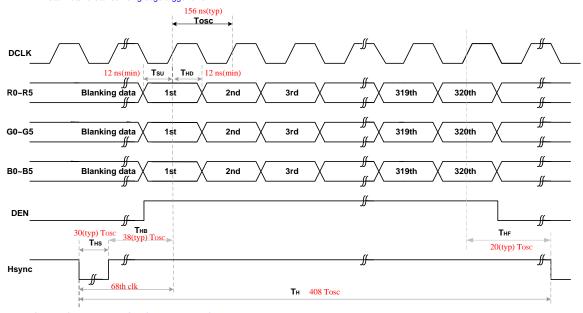
back-light should be adjusted to 105mA max

3.3 AC Timing characteristic of the LCD

a. Timing condition

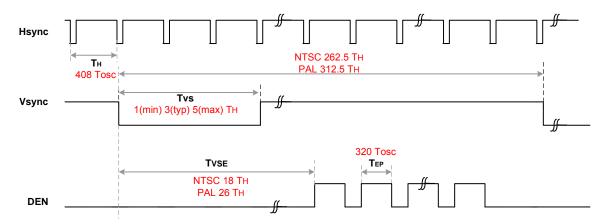
Signal	Parameter		Symbol	Min.	Тур.	Max	Unit.	Remark
DCLK	DCLK period	DCLK period		-	156	-	ns	
	Frequency		Fosc	-	6.4	-	MHz	
	DCLK High plus wid		Тсн	-	78	-	ns	
	DCLK Low plus wid	th	TCL	-	78	-	ns	
RGB	Data setup time		Tsu	12	-	-	ns	
DATA	Data hold time		THD	12	-	-	ns	
Hsync	Hsync period		TH	-	408	-	Tosc	
	Hsync pulse width		THS	5	30	-	Tosc	
	Back-Parch		Тнв		38		Tosc	
	Front-Parch		THF		20		Tosc	
	Hsync rising time		TCr	-	-	700	ns	
	Hsync falling time		TCf	-	-	300	ns	
Vsync	Voyne period	NTSC		-	262.5	-	Тн	
	Vsync period	PAL		-	312.5	ı	Тн	
	Vsync pulse width	_	Tvs	1	3	5	TH	
	Back-Porch	NTSC	Тув		15		TH	
	Dack-i Oloii	PAL			23		TH	
	Display Period	T	TVD		240		TH	
	Front Porch	NTSC	TvF		4.5		Тн	
		PAL			46.5		TH	
	Vsync rising time		TVr	-	-	700	ns	
	Vsync falling time		TVf	-	-	1.5	μs	
	Vsync falling to Hsync rising time for odd field		THVO	1	-	-	Tosc	
	Vsync falling to Hsync falling time for even field		THVE	1	-	ı	Tosc	
DEN	Vsync-DEN time NTSC		TVSE	-	18	-	TH	
	vayiic-DEIN IIIIIB	PAL	TVSE	-	26	-	TH	
	Hsync-DEN time		THE	36	68	88	Tosc	
	DEN plus width		TEP	-	320	-	Tosc	

Note 1: DEN is definition of above timing for Hsync and Vsync.

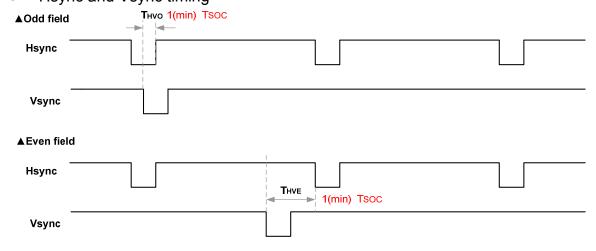

Note 2: No matter when Hsync and Vsync is inputted, the LCM can be drove only

DEN Signal. DEN should be set to low level when it is not input.

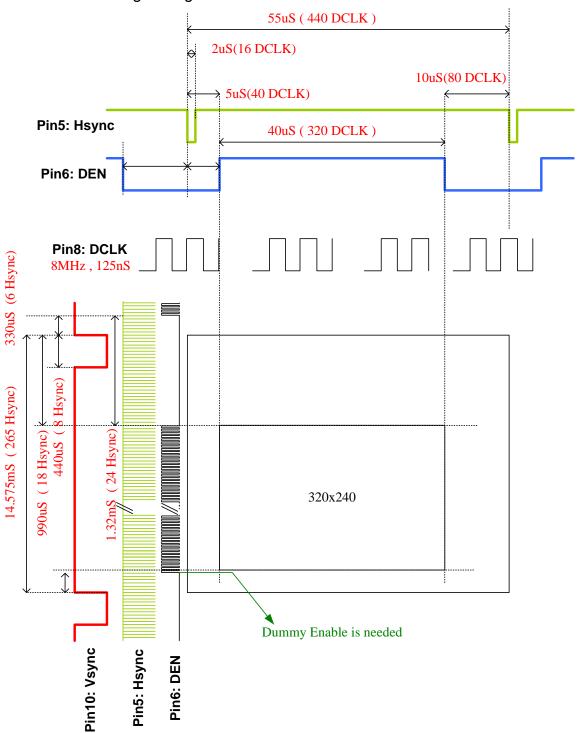
Note 3: The Dummy Enable is needed in the end of frame. Please set the LCD controller timing to 241 lines.


Horizontal display timing

Note: Data is latched rising edge trigger of CLK.



If DEN is fixed to low, the SYNC mode is used. Otherwise DE mode is used. When SYNC mode is used, 1st data start from 68th CLK after Hsync falling

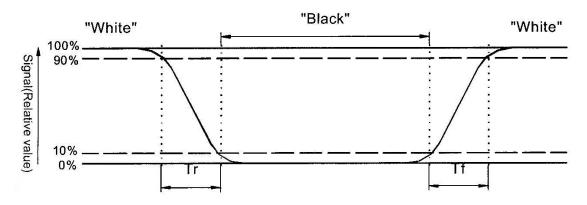

Vertical display timing

Hsync and Vsync timing

Recommend Driving Timing:

4 Optical specification

4.1 Optical characteristic of the LCD


Iten	1	Symbol	Conditon	Min.	Тур.	Max.	Unit	Remark
Response	Rise	T _r	Θ=0°	-	15	30	ms	Note 1,2,3,5
Time	Fall	T_f		-	35	50	ms	Note 1,2,3,5
Contras	t ratio	CR	At optimized viewing angle	200	350	ı		Note 1,2,4,5
	Тор			60	70	-		
Viewing	Bottom		CR≧10	40	50	-	deg.	Note1,2, 5,6
Angle	Left		OIX≦ IU	60	70	-	u c g.	140161,2, 3,0
	Right			60	70	-		
Dright		V	I _{LED} =126mA, 25℃	342	360	-	cd/m ²	Note 7
Brightr	iess	YL	I _{LED} =140mA, 25°ℂ	380	400	-	cd/m²	
Dad obro	maticity.	XR		0.610	0.640	0.670		N
Red chroi	naticity	YR		0.314	0.344	0.374		Note 7
Croop obre	maticity	XG		0.268	0.298	0.328		For reference
Green chro	malicity	YG	⊝=0°	0.553	0.583	0.613		only. These
Dive obre	maticit.	Хв	Θ=0°	0.102	0.132	0.162		data should
Blue chro	maticity	YB		0.107	0.137	0.167		be update
\\/\laid		XW		0.282	0.312	0.342		according the
vvnite chro	White chromaticity			0.299	0.329	0.359		prototype.
LCD life	time		25 ℃	-	50K	-	Hr	Note 8

Note 1:Ambient temperature=25[°]C, and lamp current I_{LED}=140mA. To be measured in the dark room.

Note 2:To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-7,after 10 minutes operation.

Note 3. Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

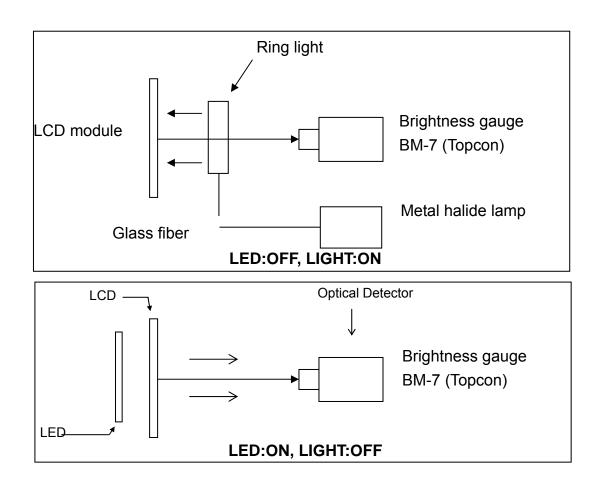
Contrast ratio(CR)= Photo detector output when LCD is at "White" state
Photo detector Output when LCD is at "Black" state

Note 5:White $V_i=V_{i50}+1.5V$

Date: 2015/3/17

Black $V_i=V_{i50}+2.0V$

"±"means that the analog input signal swings in phase with V_{COM} signal.

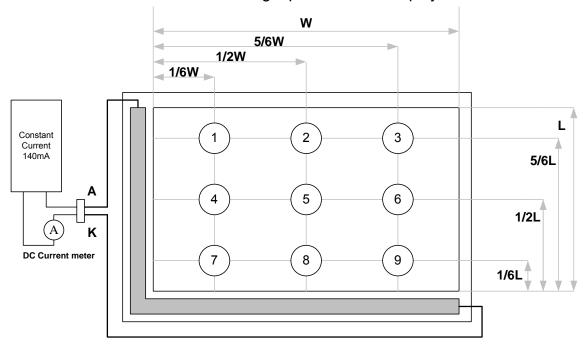

"- " means that the analog input signal swings out of phase with V_{COM} signal.

 V_{i50} : The analog input voltage when transmission is 50%. The 100% Transmission is defined as the transmission of LCD panel when all the Input terminals of module are electrically opened.

Note 6.Definition of viewing angle, Refer to figure as below.

Note 7.Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 8 : LCD life time is a estimated data, Ta=25 $^{\circ}$ C


4.2 Optical characteristic of the LED Back-light

ITEM	MIN	TYP	MAX	UNIT	Condition
Bare Brightness	3500			Cd/m2	I _{LED} =140mA,Ta=25°C
AVG. X of 1931 C.I.E.	0.28	0.31	0.34		I _{LED} =140mA,Ta=25°C
AVG. Y of 1931 C.I.E.	0.28	0.31	0.34		I _{LED} =140mA,Ta=25°C
Brightness Uniformity	80			%	I _{LED} =140mA,Ta=25°C

^()For reference only. These data should be update according the prototype.

Note1: Measurement after 10 minutes from LED operating.

Note2: Measurement of the following 9 places on the display.

Note3: The Uniformity definition

Date: 2015/3/17

(Min Brightness / Max Brightness) x 100%

4.3 Touch Panel Electrical Specification

Parameter	Condition	Standard Value	
Terminal Resistance	X Axis	400 ~ 900 Ω	
Terminal Resistance	Y Axis	200 ~ 500 Ω	
Insulating Resistance	DC 25 V	More than $10 M\Omega$	
Linearity		±1.5 %	
Notes life by Pen	Note a	100,000 times(min)	
Input life by finger	Note b	1,000,000 times (min)	

Note A.

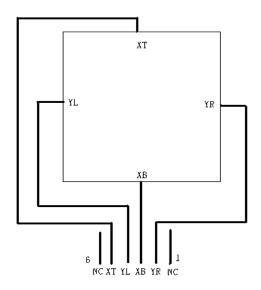
Notes area for pen notes life test is 10 x 9 mm.

Size of word is 7.5 x 6.72 Shape of pen end : R0.8

Load : 250 g

Note B

By Silicon rubber tapping at same point


Shape of rubber end: R8

Load : 200g

Frequency: 5 Hz

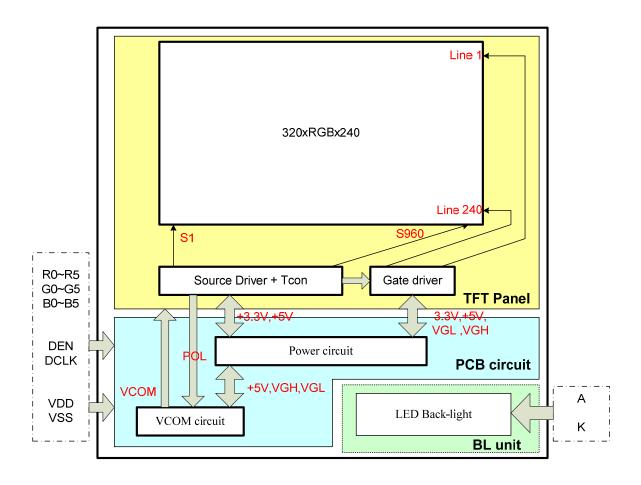
Interface

No.	Symbol	Function					
1	NC	No connection					
2	YR	Touch Panel Right Signal					
3	XB	Touch Panel Bottom Signal					
4	YL	Touch Panel Left Signal					
5	XT	Touch Panel Top Signal					
6	NC	No connection					

5 Interface specifications

5.1 Driving signals for the TFT panel

JAE:FA5B040HF1R3000 (Suitable FPC :t=0.3+/-0.03mm , 0.5+/-0.03mm pitch)


Pin no	Symbol	I/O	Description	Remark
1~4	VDD		Power supply for the logic (3.3V)	
5			No connection	
	NC I		Can be OPEN fixed to VDD or GND.	
6	DEN	I	Input data enable control	
7	VSS		GND	
8	DCLK	I	Clock signal. Latching data at the rising edge.	
9	VSS		GND	
10	NC	ı	No connection	
		ı	Can be OPEN fixed to VDD or GND.	
11	VSS		GND	
12	B5	l	Blue data	
13	B4	I		
14	B3	ı		
15	VSS		GND	
16	B2	I	Blue data	
17	B1	1		
18	B0	I		
19	VSS		GND	
20	G5	1	Green data	
21	G4	1		
22	G3	ı		
23	VSS		GND	
24	G2	1	Green data	
25	G1	1		
26	G0	1		
27	VSS		GND	
28	R5	ı	Red data	
29	R4	I		
30	R3	I		
31	VSS		GND	
32	R2	I	Red data	
33	R1	I		
34	R0	I		
35	NC		No connection	
36	VSS		GND	
37	XT		Touch Panel Top Signal	
38	YL		Touch Panel Left Signal	
39	XB		Touch Panel Bottom Signal	
40	YR		Touch Panel Right Signal	

5.2 Driving signals for the LED back-light

JST Housing: BHR-03VS-1

Pin no	Symbol	Level	Description	Remark
1	Α	-	LED Anode	
2	NC	-	No connection	
3	K	-	LED Cathode	

6 BLOCK DIAGRAM

7 DISPLAYED COLOR AND INPUT DATA

	Color & Gray								D	ATA S	SIGNA	L							
	Scale	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(61)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Neu	Red(31)	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(1)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(61)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
0.00	Green(31)	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(1)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	<u> </u>	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(31)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	:	<u> </u>	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

8 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2
Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Humidity Test	40 °C, Humidity 90%, 96 hrs	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9 USE PRECAUTIONS

9.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

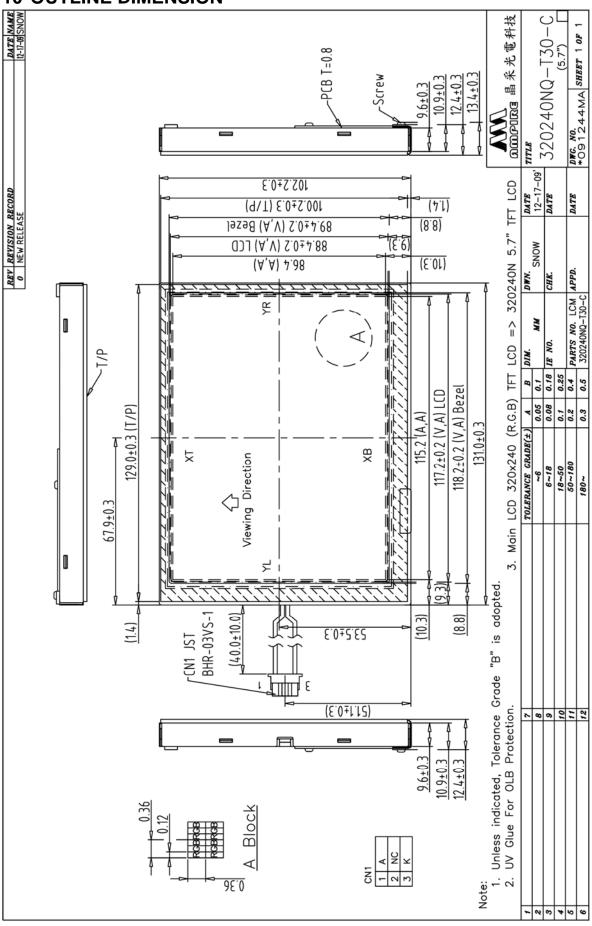
9.2 Installing precautions

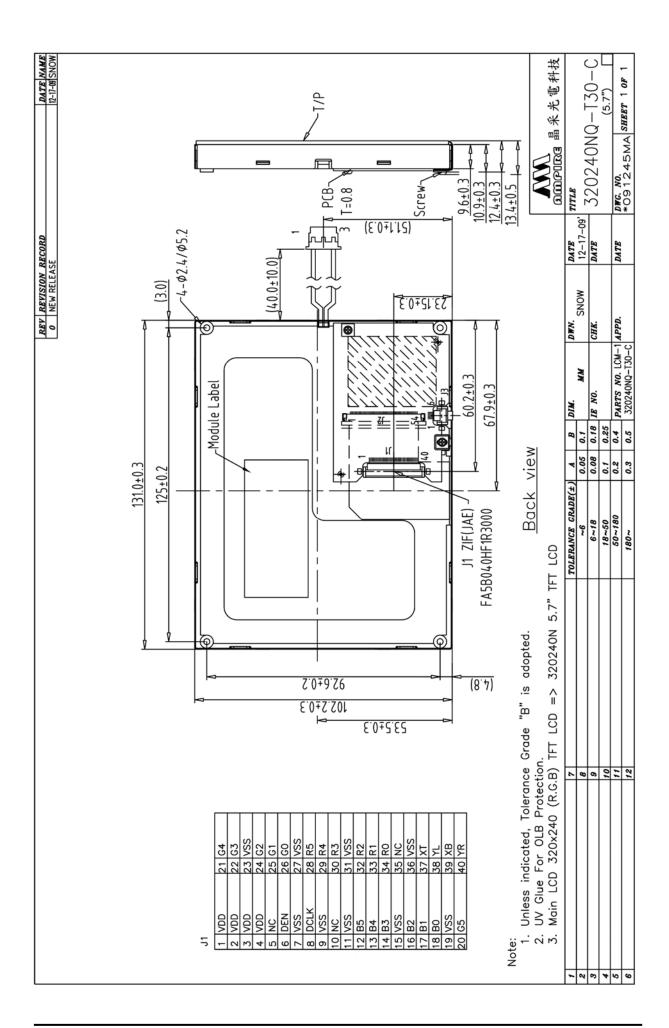
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

9.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.

3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.


9.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9.5 Other

- Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warranty for all products and three months warrantee for all repairing products.

10 OUTLINE DIMENSION

