

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1920357ATZQW-00
APPROVED BY	
DATE	

☑ Approved For Specifications□ Approved For Specifications & Sample

AMPIRE CO., LTD. 4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.) 新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2015/10/20		New Release	Emil

1. Features

AM-1920357ATZQW-00 is a 28" color TFT-LCD Module with special aspect ratio 16:3 and wide resolution 1920x357.

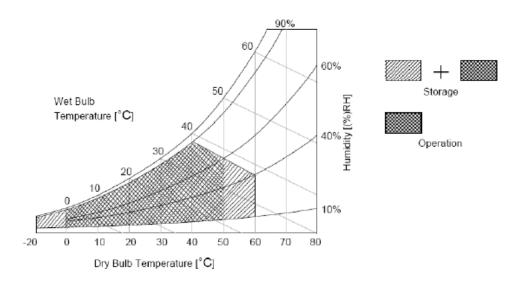
- (1) Resolution : 1920x357
- (2) Aspect Ratio : 16:3
- (3) Display Color : 8bits, 16.7M
- (4) Operation mode for display : Normally Black
- (5) Back Light Source : LED
- (6) Brightness : 700 nits

2. PHYSICAL SPECIFICATIONS

Mo	del	EWK-2812D
LCD	Туре	28" color TFT active matrix, wide LCD
	Display Area	698.4 (H) x 129.86(V)
	Optimum Resolution	1920x357
	Contrast Ratio	3000:1
	Viewing Angles	178(H)
		178(V)
	Response Time	6.5ms
	Backlight	LED
	LED Life-time	30000 HR (Typ.)
	Brightness	700 nits
	Aspect Ratio	16:3
	Panel Surface	Anti-glare, hard coating (3H)
Power	Consumption	34.44W (typ.)
Operation Conditions	Temperature	$0 \sim 50^{\circ}C$
	Humidity	10% ~ 90%
Dimensio	ons (mm)	733.78 x 165.34 x 20.8(with TCON Board)
Weight	Net	2.1 Kg

3. ABSOLUTE MAX. RATINGS

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


ltem	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2 : Maximum Wet-Bulb should be 39 $^\circ\!\mathbb{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50 $^\circ\! \mathbb C\,$ Dry condition

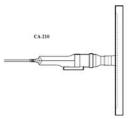
4. ELECTRICAL CHARACTERISTICS

4-1 TFT LCD Module

DC Characteristics

	Deservation	Ormhal		Value	11-3	Mate	
	Parameter	Symbol	Min.	Тур.	Max	- Unit	Note
LCD							
Power Su	pply Input Voltage	V _{DD}	10.8	12	13.2	V _{DC}	
Power Su	pply Input Current	I _{DD} 0.39 0.56 A		1			
Inrush Cu	rrent	I _{RUSH}			5	Α	2
Permissib	le Ripple of Power Supply Input Voltage	V _{RP}			600	mV _{pk-pk}	3
	Input Differential Voltage	VID	200	400	600	mV _{DC}	4
LVDS	Differential Input High Threshold Voltage	V _{TH}	+100		+300	mV _{DC}	4
Interface	Differential Input Low Threshold Voltage	V _{TL}	-300		-100	mV _{DC}	4
	Input Common Mode Voltage	VICM	1.1	1.25	1.4	VDC	4
CMOS	Input High Threshold Voltage	V _⊮ (High)	2.7		3.3	V _{DC}	5
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V _{DC}	5

4-2 LED backlight

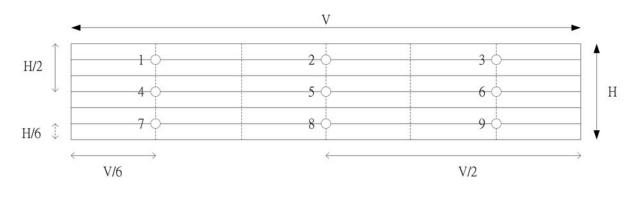

Parameter	Symbol	Value			Unit
		Min.	Тур.	Max.	
LED forward voltage per channel	VLED	29	31	32	V
LED forward current per channel	ILED		480	528	mA

5. Optical Specifications

5-1 Optical specification

Dougnation		Symbol		Value	T	N	
	Parameter		Min.	Тур.	Max.	Unit	Note
	Contrast Ratio	CR	2,400	3,000			1,2
Surfac	e Luminance (White)	Lwн	560	700	-	cd/m²	1,3
Lui	minance Variation	δ white(9P)	-	-	1.33		1,4
Resp	onse Time (G to G)	Τγ	-	6.5	-	m s	1,5
	x axis, right (φ =0°)	θ,	-	89	-	Degree	1,6
Viewing	x axis, left(φ =180°)	θ	-	89		Degree	1,6
Angle	y axis, up(ϕ =90°)	θ.,	-	89	-	Degree	1,6
	y axis, down(φ =270°)	θ a	-	89	-	Degree	1,6

Optical characteristics are determined after the monitor has been 'ON' and stable for more than 5 minutes in a general environment at 25°C. The values specified are at an approximate distance0cm from the LCD surface at a viewing angle of φ and θ equal to 0°.



Note:

- 1. The value is for reference.
- 2. CR is defined as

Contrast Ratio= Surface Luminance of Lon5/Surface Luminance of Loff5

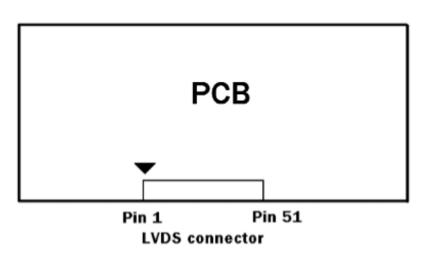
3. Surface luminance is luminance value at point 5 across the LCD surface 0cm from the surface with all pixels displaying white. For more information see the figure bellow. LWH=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.

Date : 2015/10/20

4. The variation in surface luminance, δ white(9P), is defined as

 δ WHITE(9P)= Max(Lon1,Lon2,...,Lon9) / Min(Lon1,Lon2,...,Lon9)

- 5. Response time Tγ is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on Fv=60Hz to optimize.
- 6. According to the original panel specification, the viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. The viewing angle values are defined as the same of the initial panel specification. For more information see the figure bellow.


7. INTERFACE 7-1 LCD interface

PIN	Symbol	Description	PIN	Symbol	Description
1	Open	No connection (Internal Open)	26	GND	Ground
2	N.C.	Internal Use Only	27	GND	Ground
3	N.C.	Internal Use Only	28	CH2_0-	LVDS Channel 2, Signal 0-
4	N.C.	Internal Use Only	29	CH2_0+	LVDS Channel 2, Signal 0+
5	N.C.	Internal Use Only	30	CH2_1-	LVDS Channel 2, Signal 1-
6	N.C.	Internal Use Only	31	CH2_1+	LVDS Channel 2, Signal 1+
7	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA	32	CH2_2-	LVDS Channel 2, Signal 2-
8	N.C.	No connection (Internal Open)	33	CH2_2+	LVDS Channel 2, Signal 2+
9	N.C.	No connection	34	GND	Ground
10	GND	Ground	35	CH2_CLK-	LVDS Channel 2, Clock -
11	GND	Ground	36	CH2_CLK+	LVDS Channel 2, Clock +
12	CH1_0-	LVDS Channel 1, Signal 0-	37	GND	Ground
13	CH1_0+	LVDS Channel 1, Signal 0+	38	CH2_3-	LVDS Channel 2, Signal 3-
14	CH1_1-	LVDS Channel 1, Signal 1-	39	CH2_3+	LVDS Channel 2, Signal 3+
15	CH1_1+	LVDS Channel 1, Signal 1+	40	N.C.	Internal Use Only
16	CH1_2-	LVDS Channel 1, Signal 2-	41	N.C.	Internal Use Only
17	CH1_2+	LVDS Channel 1, Signal 2+	42	GND	Ground
18	GND	Ground	43	GND	Ground
19	CH1_CLK-	LVDS Channel 1, Clock -	44	GND	Ground
20	CH1_CLK+	LVDS Channel 1, Clock +	45	GND	Ground
21	GND	Ground	46	GND	Ground
22	CH1_3-	LVDS Channel 1, Signal 3-	47	N.C.	No connection
23	CH1_3+	LVDS Channel 1, Signal 3+	48	VDD	Power Supply, +12V DC Regulate
24	N.C.	Internal Use Only	49	VDD	Power Supply, +12V DC Regulate
25	N.C.	Internal Use Only	50	VDD	Power Supply, +12V DC Regulate
20			51	V _{DD}	Power Supply, +12V DC Regulate

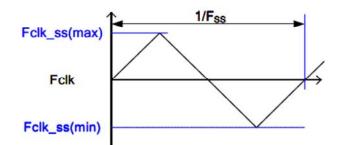
LCD connector: FI-RE51S-HF (JAE, LVDS connector)

 51
 VDD
 Power Supply, +12V DC Re

 Note: N.C.: please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).

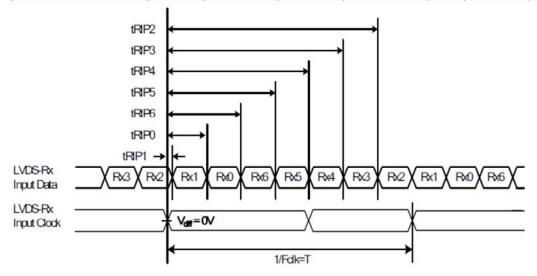
7-2 Backlight input interface

Pin No.	Symbol	Feature
1	CH1+	VLED OUT CH1
2	CH1-	I Return CH1
3	NC	NC
4	NC	NC
5	CH2+	VLED OUT CH2
6	CH2-	l Return CH2

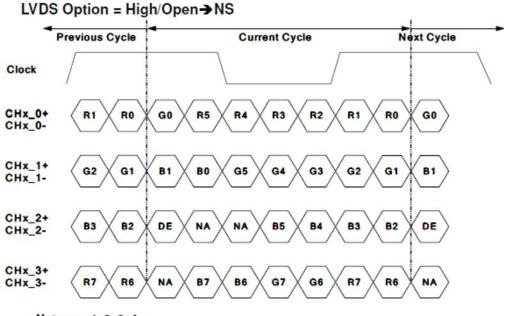

Connector type : SMD_PH2.0mm-6pin or equivalent

8. INPUT SIGNAL:

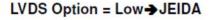
AC Characteristics

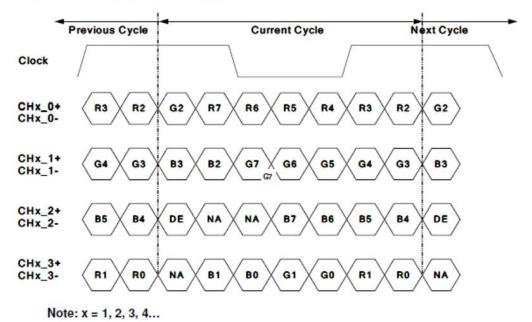

	Parameter		Value			Unit	Note
	Falameter	Symbol	Min.	Тур.	Max	Unit	Note
	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%		Fclk +3%	MHz	1
LVDS Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30		200	KHz	1
monace	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5		0.4 0.5	ns	2

1. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.



2. Receiver Data Input Margin


Deservation	Combal		Hall	Note		
Parameter	Symbol	Min	Туре	Max	Unit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	[tRMG]	ns	
Input Data Position1	tRIP0	T/7-[tRMG]	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7-[tRMG]	2T/7	2T/7+ tRMG	ns	
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	



8-1 LVDS Signal

Note: x = 1, 2, 3, 4...

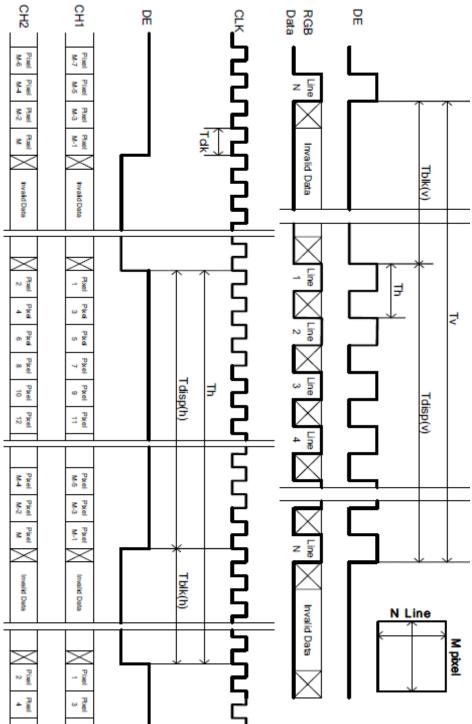
8-2 TTL Signal

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Signal	Item	Symbol	Min.	Тур.	Max	Unit
Vertical Section	Period	Tv	1096	1125	1480	Th
	Active	Tdisp (v)		1080		
	Blanking	Tblk (v)	16	45	400	Th
	Period	Th	1030	1100	1325	Tclk
Horizontal Section	Active	Tdisp (h)		960		
	Blanking	Tblk (h)	70	140	365	Tclk
Clock	Frequency	Fclk=1/Tclk	50	74.25	82	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz

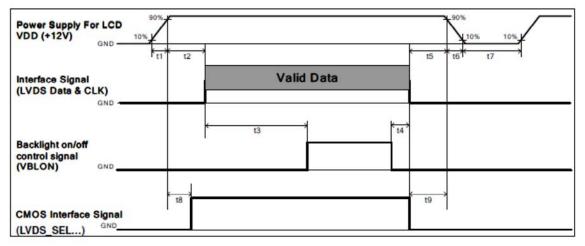
Timing Table (DE only Mode)

Notes:


(1) Display position is specific by the rise of DE signal only.

Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.

(3) If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.


(4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

⁽²⁾Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.

8-3 TFT-LCD Signal Timing Waveforms

8-4 Power ON/OFF Sequence

Decemeter	Values							
Parameter	Min.	Туре.	Max.	Unit				
t1	0.4		30	ms				
t2	0.1		50	ms				
t3	450			ms				
t4	0'1			ms				
t5	0			ms				
t6			*2	ms				
t7	500			ms				
t8	10 ^{*3}		50	ms				
t9	0	1		ms				

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.

(2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)

(3) When CMOS Interface signal is N.C. (no connection), opened in Transmitted end, t8 timing spec can be negligible.

9. DISPLAYED COLOR AND INPUT DATA

		Color &								D	ATA S	BIGNA	L							
Gray Scale		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0	
Basic Color		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
		Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
		Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
		Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
		Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
		Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:
		Red(31)	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
					:	:			:			:		:	:	:			:	:
		Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Green		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
		Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		Green(31)	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
		Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Blue		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		Blue(31)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
		Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
		Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

10. USE PRECAUTIONS

10.1. Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

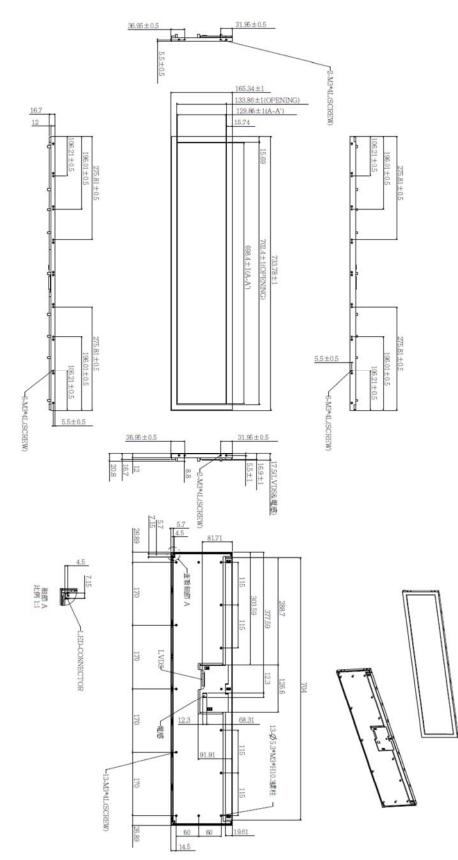
10.2. Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

10.3. Storage precautions

- Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

10.4. Operating precautions


- Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.

8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

10.5. Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

11. OUTLINE DIMENSION

