

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1024600LTMQW-T00H
APPROVED BY	
DATE	

Approved For Specifications
Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟) TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

Revision Date	Page	Contents	Editor
2012/4/16	-	New Release	Rober

1. FEATURES

The TFT is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module is composed of a TFT LCD panel, a driving circuit, touch panel and a back light system. This TFT LCD has a 10.1 (17:10) inch diagonally measured active display area with WSVGA(1024 x 600 pixel) resolution.

(1) 10.1 (17:10 diagonal) inch configuration

- (2) One channel LVDS interface
- (3) 262K color by 6 bit R.G.B signal input
- (4) RoHS Compliance
- (5) Halogen Free

Item	Specifications	Unit	Note
LCD size	10.1" (Diagonal)	inch	
Active area	222.72 (H) ×125.28 (V)	mm	
Number of pixels	1024(H) × 600(V)	pixels	
Pixel pitch	0.2715(H) × 0.2088(V)	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	262,144	colors	
Display mode	Normally white		
Dimensional outline	235.0 (Typ) ×145.8 (Typ) ×9(D)	mm	
Back-light	Single LED (Side-Light type)		
Weight	TBD	g	
Surface treatment	Anti-glare		

2. PHYSICAL SPECIFICATIONS

3. ABSOLUTE MAX. RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit.

ltem	Symbol	Val	ues	UNIT	Note	
	Oymbol	Min.	Max.		Note	
LED Power Supply Voltage	VLED	-0.3	15.0	V	GND=0	
Logic Supply Voltage	Vdd	-0.3	5.0	V		
Operating Temperature	Тора	-5	60	°C		
Storage Temperature	Тѕтс	-20	70	°C		

4. ELECTRICAL CHARACTERISTICS

4.1 TFT LCD Module

Itom	Symbol	,	Values		Noto	
item	Symbol	Min.	Тур.	Max.	UNIT	Note
Power voltage	VDD	3.0	3.3	3.6	V	Note1
Current of power supply	IDD	-	0.3	-	А	VDD=3.3V Black pattern
Power voltage for LED driver	VLED	4.7	5	5.3	V	
LED driver current of power supply	ILED	-	600		mA	VLED=5V ADJ=100%

Note 1: VDD-dip condition :

when 2.7V \leq VDD<3.0V , td \leq 10ms.

 $\mathsf{VDD}\!>\!3.0\mathsf{V}$, $\mathsf{VDD}\text{-dip}$ condition should be same as $\mathsf{VDD}\text{-turn-con}$ condition.

4.2 Switching Characteristics of LVDS Receiver

ltem	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential Input High Threshold	VTH			100	mV	VCM=1.2V
Differential Input Low Threshold	VTL	-100			mV	
Input current	lin	-10		+10	uA	
Differential input Voltage	[VID]	0.2		0.6	V	
Common Mode Voltage Offset	VCM	$\frac{ VID }{2}$	1.25	$2.4 - \frac{ VID }{2}$	V	

4.3 6-bit LVDS Input Data Mapping

		Symbol	Min.	Тур.	Max.	Unit		
LVDS input signal sequence	Frame Rate			tclk	41	51.2	57	MHz
LCD input signal sequence (input LVDS Transmitter)			Horizontal total Timing	t _H	1214	1344	1364	tCLK
		Horizontal	Horizontal effective Timing	t _{HA}	1024			tCLK
	DENA	A	Horizontal Blank Time	t _{HB}	190	320	340	tCLK
		Vertical	Vertical total Time	t _v	615	365	645	t _H
			Vertical effective Time	t _{VA}	600		t _H	
			Vertical Blank Time	t _{VB}	15	35	45	t _H

4.4 Timing characteristics of input signals

Horizontal timing sequence

Vertical timing sequence

4.5 Backlight Driving Conditions

ltom	Symbol		Values	Unit	Noto	
nem	Symbol	Min.	Тур.	Max.	Unit	NOLE
LED Driver voltage	VLED	4.7	5	5.3	V	
Power Supply Current For LED Driver	ILED	-	600	-	mA	VLED=5V VADJ=3.3V (duty 100%)
ADJ Input Voltage	V_{ADJ}	-	3.3	VLED	V	duty=100% Note(3)
LED voltage	Vak		19.2		V	l _L =120mA Ta=25°C
LED current	1.	-	120		mA	Ta=25°C
	IL	-	100		mA	Ta=60°C
LED Life Time	_		20K		Hour	Note (2)

Note (1) The constant current source is needed for white LED back-light driving.

When LCM is operated over 60 deg.C ambient temperature, the $I_{\rm L}$ of the LED back-light should be adjusted to 100mA max

There are 6 Groups LED shown as below , $V_{\text{LEDA-LEDK}}\text{=}10V$,Ta=25 $^\circ\!\mathrm{C}$

Note2 : Condition: Ta=25°C, continuous lighting

Life time is estimated data.

Definitions of failure:

- 1. LCM brightness becomes half of the minimum value.
- 2. LED doesn't light normally.
- When LCM is operated over 40 $^\circ\!\mathrm{C}$ $\,$ ambient temperature, the ILED should be follow :

5. OPTICAL SPECIFICATION

5.1 Optical specification

ltom	Symbol	Condition		Values	;	l Init	Noto	
item			Min.	Тур.	Max.	Unit	NOLE	
	θL		60	70				
	θR		60	70		dograa	Note1	
viewing angle	θυ	(CR≦10)	60	70		uegree	Note2	
	θD		40	50				
Posponso timo	Tr			5	7	msec	Note3	
	TF			20	28	msec	NOLES	
Contrast ratio	CR		400	500			Note2	
	WX		0.26	0.31	0.36			
	WY		0.28	0.33	0.38			
	RX		0.54	0.59	0.64			
Color obromoticity	RY	Normal	0.28	0.33	0.38		Note1	
Color chromaticity	GX	θ-Φ-0	0.29	0.34	0.39		Note4	
	GY		0.54	0.59	0.64			
	BX		0.11	0.16	0.21			
	BY		0.05	0.1	0.15			
Luminance	L		160	200		cd/m ²	Note4	
Luminance uniformity	YU		70			%	Note5	

5.2 Measuring Condition

- Measuring surrounding : dark room
- Ambient temperature : 25±2°C
- 15min. warm-up time

5.2 Measuring Equipment

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7 of view : 1° / Height : 120mm.)

Note 1 : Definition of viewing angle range

Note 2 : Definition of Contrast Ratio (CR) : measured at the center point of panel

CR = -

Luminance with all pixels black

Luminance with all pixels white

Note 3 : Definition of Response time : Sum of T_R and T

Note 4 : Definition of optical measurement setup

Note 5 : Definition of brightness uniformity

Note 6 : Rubbing Direction (The different Rubbing Direction will cause the different optima view direction

Note 7 : Condition: Ta=25 $^\circ\!\mathbb{C}$, Life time is estimated data.

Definitions of failure:

- i. LCM brightness becomes half of the minimum value.
- ii. LED doesn't light normally.

6. BLOCK DIAGRAM

6.2 Pixel format

7.INTERFACE

7.1 Electrical Interface Connection

CN1(Input signal): CSTAR DS100-430-H23 (equivalent JAE FI-XB30SSRL-HF16)

Pin No.	Symbol	Description	Note
1	GND	Ground	
2	VDD	3.3V Power	
3	VDD	3.3V Power	
4	V_EDID	3.3V Power for EDID	
5	ADJ	Adjust for LED brightness	Note*
6	CLK_EDID	EDID Clock Input	
7	DATA_EDID	EDID Data Input	
8	RXIN0-	LVDS Signal - channel0-	
9	RXIN0+	LVDS Signal+ channel0+	
10	GND	Ground	
11	RXIN1-	Data Input channel1-	
12	RXIN1+	Data Input channel1+	
13	GND	Ground	
14	RXIN2-	Data Input channel2-	
15	RXIN2+	Data Input channel2+	
16	GND	Ground	
17	RXCLKIN-	Data Input CLK-	
18	RXCLKIN+	Data Input CLK+	
19	GND	Ground	
20	NC	No connection	
21	NC	No connection	
22	GND	Ground	
23	GND	Ground	
24	VLED	VLED Power +5V	

25	VLED	VLED Power +5V
26	VLED	VLED Power +5V
27	NC	No connection
28	NC	No connection
29	NC	No connection
30	NC	No connection

 $Note^{\star}$: The brightness of LCD panel could be changed by adjusting ADJ

[Note]

(1) ADJ can adjust brightness to control Pin. Pulse duty the bigger the brighter.

(2) ADJ Signal=0~3.3V , Operation Frequency :

Dimming Range		
PWM Frequency (F)	Duty Cycle (Min.)	Duty Cycle (Max.)
100Hz < F < 500Hz	5%	100%
500Hz < F < 20KHz	10%	100%

Duty Cycle = t / T *100%

(3) LVDS Connector : CSTAR DS100-430-H23

8. Power On/Off Sequence

ltem	Min.	Тур.	Max.	Unit	Remark
TP1	0.5		10	msec	
TP2	0		50	msec	
TP3	0		50	msec	
TP4	500			msec	
TP5	200			msec	
TP6	200			msec	

Note :

- The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signal on the low or keep a high

impedance.

(4) TP4 should be measured after the module has been fully discharged between power off and on period.

(5) Interface signal shall not be kept at high impedance when the power is on.

9. TOUCH PANEL ELECTRICAL SPECIFICATION

9.1 Touch Screen Panel Characteristics

9.1 Electrical characteristics

	ITEM	SPEIFICATION	REMARKS
1	Rated Voltage	DC 7V Max.	
2	Posistance	X axis:250Ω ~ 1200Ω(FILM)	EDC At connector
2	Resistance	Y axis:100Ω ~ 600Ω(GLASS)	FPC At connector
		10ms Max	
4 Chattering		At connector pin	
5	Insulation	25MΩ 以上(DC 25V)	
	Resistance	25MΩ Min(DC 25V)	

9.2 Life test condition

	ITEM	SPEIFICATION	REMARKS
1	Notes life	50000 words Min	Note A.
2	Input life	10000000 times Min.	Note B.

> Measurement condition of minimum input force

Resistance between X & Y axis must be equal or lower than $2k\Omega$ (Ron $\leq 2k\Omega$)

樹脂棒 Polyacetal rod pen Fig.1 筆輸入 by pen TOUCH	砂膠 押下 push down silicon rubber 硬度 60° Hardness Fig.2 指輸入 by finger
Note A. Notes life test condition (by pen)	Note B. Input life test condition(by finger)
Shape of pen end : R 0.8 (Refer Fig.1)	Sharp of rubber end : R8 Hardness
Materials of pen : Polyacetal	60°(Refer fig.2)
Load : 250g	Load : 200g
Speed : 60mm/s	Frequency : 5Hz

9.3 Touch Screen Pane & Interface

No.	Symbol	Function
1	Y2	Touch Panel Top Signal in Y Axis
2	X2	Touch Panel Right Signal in X Axis
3	Y1	Touch Panel Bottom Signal in Y Axis
4	X1	Touch Panel Left Signal in X Axis

Attention

- (1) Since touch panel is consist of Glass, pls. be careful your hand and other part from injury at handling. You must wear gloves at handling.
- (2) Do not put a heavy shock or stress on touch panel.
- (3) Do not lift Touch Panel by cable (FPC).
- (4) Do not add any stress only film face.
- (Ex. Don't transfer the panel by film face with vacuum)
- (5) Pls. use dry cloth or soft cloth with neutral detergent (after wring dry) or one with ethanol at cleaning. Do not use any organic solvent, acid or alkali solution.
- (6) Do not pile Touch Panel. Do not put heavy goods on Touch Panel.
- (7) Do not bend a cable of Touch Panel for prevent happen to line cut failure.

Please don't uses following method for insert the cable to connector

- (8) Please pay attention for the matter as stated below at mounting design of touch panel & enclosure
- -1. Enclosure support to fix touch panel must be out of view (transparent) area.(Do not design enclosure presses the view area to protect from miss input)
- -2. Enclosure edge must be between view area & Guaranteed active area. (Enclosure edge must not touch with view area)
- -3. We recommend the material of support to fix touch panel is elastic material.
- -4. Do not bond top surface (film) of touch panel with enclosure.
- -5. The corner parts (fig.*) has conductivity. Do not touch any metal part after mounting.
- -6. Special design is required for water resistance use.

10. RELIABILITY TEST CONDITIONS

ltem	Test Conditions	Note
High Temperature Storage	Ta = 70°C 240 hrs	
Low Temperature Storage	Ta = -20℃ 240 hrs	
High Temperature Operation	Ts = 60℃ 240 hrs	
Low Temperature Operation	Ta = -5℃ 240 hrs	

Storage / Operating temperature

Note .Max wet bulb temp.= $39_{\circ}C$

11.INCOMING INSEPCTION STANDARDS

11.1. Scope

Specifications contain

- 11.1.1 Display Quality Evaluation
- 11.1.2 Mechanics Specification

11.2. Sampling Plan

Unless there is other agreement, the sampling plan for incoming inspection shall follow MIL-STD-105E LEVEL II.

- 11.2.1 Lot size: Quantity per shipment as one lot (different model as different lot).
- 11.2.2 Sampling type: Normal inspection, single sampling.
- 11.2.3 Sampling level: Level II.
- 11.2.4 AQL: Acceptable Quality Level

Major defect: AQL=0.65

Minor defect: AQL=1.0

11.3. Panel Inspection Condition

11.3.1 Environment:

Room Temperature: 25±5°C. Humidity: 65±5% RH.

- Illumination: 300 ~ 700 Lux.
- 11.3.2 Inspection Distance:

35-40 cm

11.3.3 Inspection Angle:

The vision of inspector should be perpendicular to the surface of the Module.

11.3.4 Inspection time :

Perceptibility Test Time: 20 seconds max.

11.4. Display Quality

11.4.1 Function Related:

The function defects of line defect, abnormal display, and no display are considered Major defects.

11.4.2 Bright/Dark Dots:

Defect Type / Specification	G0 Grade	A Grade
Bright Dots	0	N≤ 3
Dark Dots	0	N≤ 4
Total Bright and Dark Dots	0	N≤ 6

[Note 1]

Judge defect dot and adjacent dot as following.

- (1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)
- (2) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
- (3) Allow above (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.
- (4) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.
- (5) There should be no distinct non-uniformity visible through 3% ND Filter within 2 sec inspection times.

Defect Type	Specification	Count(N)
Dot Shape	D≤0.25mm	Ignored
(Particle、Scratch and Bubbles in	0.25mm < D≤ 0.5mm	N≤ 3
display area)	D > 0.5mm	N=0
Line Shape	W≤ 0.07mm	Ignored

11.4.3 Visual Inspection specifications:

(Particles、Scratch、Lint and	0.07mm <w<math>\leq 0.1mm , L\leq 5mm</w<math>	N≤ 3
Bubbles in display area)	W > 0.1mm , L > 5mm	N=0

[Note 2] W : Width[mm], L : Length[mm], N : Number, ϕ : Average Diameter

[Note 3] Bright dot is defined through 3% transmission ND Filter as following.

12. HANDLING & CAUTIONS

12.1 Cautions when taking out the module

Pick the pouch only, when taking out module from a shipping package.

12.2 Cautions for handling the module

- 12.2.1 As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- 12.2.2 As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- 12.2.3 As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- 12.2.4 Do not pull the interface connector in or out while the LCD module is operating.
- 12.2.5 Put the module display side down on a flat horizontal plane.
- 12.2.6 Handle connectors and cables with care.

12.3 Cautions for the operation

- 12.3.1 When the module is operating, do not lose MCLK, DE signals. If any one of these signals were lost, the LCD panel would be damaged.
- 12.3.2 Obey the supply voltage sequence. If wrong sequence were applied, the module would be damaged.

12 .4 Cautions for the atmosphere

- 12.4.1 Dewdrop atmosphere should be avoided.
- 12.4.2 Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer-packing pouch and under relatively low temperature atmosphere is recommended.

12.5 Cautions for the module characteristics

- 12.5.1 Do not apply fixed pattern data signal to the LCD module at product aging.
- 12.5.2 Applying fixed pattern for a long time may cause image sticking.

12.6 Other cautions

- 12.6.1 Do not disassemble and/or re-assemble LCD module.
- 12.6.2 Do not re-adjust variable resistor or switch etc.
- 12.6.3 When returning the module for repair or etc, please pack the module not to be broken. We recommend using the original shipping packages.
- 12.6.4 AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

13. OUTLINE DIMENSION

Date : 2012/4/16

AMPIRE CO., LTD.