

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1024600L2TMQW-01H
	All 102+000E21MQW 0111
APPROVED BY	All 102-1000LZ1IIIQW 0111

- ☐ Approved For Specifications
- ☐ Approved For Specifications & Sample

AMPIRE CO., LTD.

4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2012/4/16	-	New Release	Rober

1. FEATURES

The TFT is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module is composed of a TFT LCD panel, a driving circuit and a back light system. This TFT LCD has a 10.1 (17:10) inch diagonally measured active display area with WSVGA(1024 x 600 pixel) resolution.

- (1) 10.1 (17:10 diagonal) inch configuration
- (2) One channel LVDS interface
- (3) 262K color by 6 bit R.G.B signal input
- (4) RoHS Compliance
- (5) Halogen Free

Date: 2012/04/16

2. PHYSICAL SPECIFICATIONS

Item	Specifications	Unit	Note
LCD size	10.1" (Diagonal)	inch	
Active area	222.72 (H) ×125.28 (V)	mm	
Number of pixels	1024(H) × 600(V)	pixels	
Pixel pitch	0.2715(H) × 0.2088(V)	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	262,144	colors	
Display mode	Normally white		
Dimensional outline	235.0 (Typ) ×145.8 (Typ) ×8.1(D)	mm	
Back-light	Single LED (Side-Light type)		
Weight	TBD	g	
Surface treatment	Anti-glare		

3. ABSOLUTE MAX. RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit.

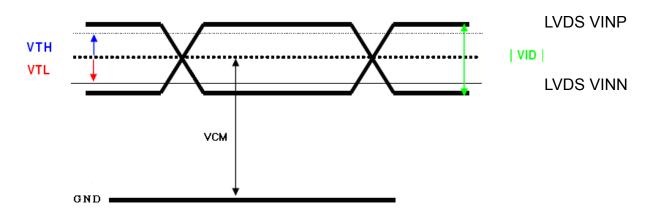
ltem	Symbol	Val	ues	UNIT	Note
no	Cymbol	Min.	Max.	Oitii	Hote
LED Power Supply Voltage	VLED	-0.3	15.0	V	GND=0
Logic Supply Voltage	V _{DD}	-0.3	5.0	V	
Operating Temperature	Тора	-20	70	°C	
Storage Temperature	Тѕтс	-30	80	°C	

4. ELECTRICAL CHARACTERISTICS

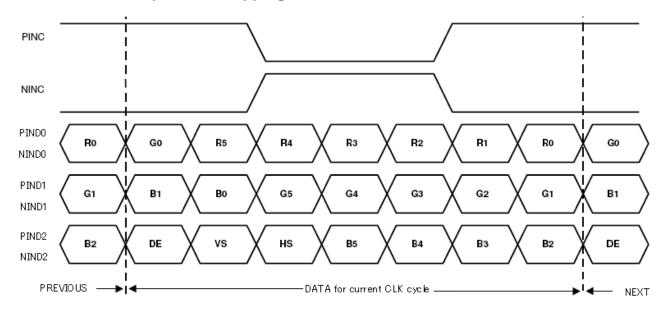
4.1 TFT LCD Module

Item	Symbol	Values			UNIT	Note
item	Syllibol	Min.	Тур.	Max.	ONIT	NOTE
Power voltage	VDD	3.0	3.3	3.6	V	Note1
Current of power supply	IDD	-	0.3	-	Α	VDD=3.3V Black pattern
Power voltage for LED driver	VLED	9	12.0	15.0	V	
LED driver current of power supply	ILED	1	1.0		Α	VLED=12V ADJ=100%

Note 1: VDD-dip condition :

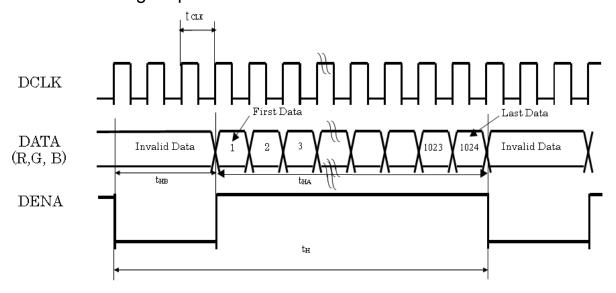

Date: 2012/04/16

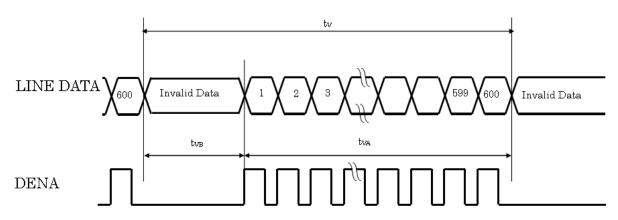
when 2.7V \leq VDD<3.0V , td \leq 10ms.


VDD>3.0V , VDD-dip condition should be same as VDD-turn-con condition.

4.2 Switching Characteristics of LVDS Receiver

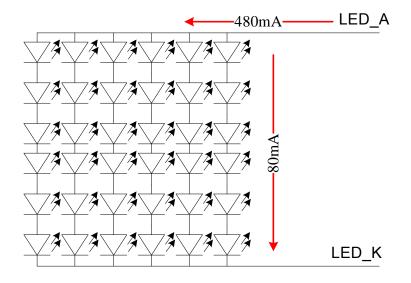
Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Differential Input High Threshold	VTH	1		100	mV	VCM=1.2V
Differential Input Low Threshold	VTL	-100		1	mV	
Input current	IIN	-10		+10	uA	
Differential input Voltage	VID	0.2		0.6	V	
Common Mode Voltage Offset	VCM	$\frac{ VID }{2}$	1.25	$2.4 - \frac{ VID }{2}$	V	


4.3 6-bit LVDS Input Data Mapping


4.4 Timing characteristics of input signals

	ltem				Min.	Тур.	Max.	Unit	
LVDS input signal sequence		Frame F	Rate	tclk	41	51.2	57	MHz	
			Horizontal total Timing	t _H	1214	1344	1364	tCLK	
		Horizontal	Horizontal effective Timing	t _{HA}		1024		tCLK	
LCD input signal sequence	DENA	DENA	NA	Horizontal Blank Time	t _{HB}	190	320	340	tCLK
(input LVDS Transmitter)			Vertical total Time	t _V	615	365	645	t _H	
	Vertical		Vertical	Vertical effective Time	t _{VA}		600		t _H
			Vertical Blank Time	t _{VB}	15	35	45	t _H	

Horizontal timing sequence


Vertical timing sequence

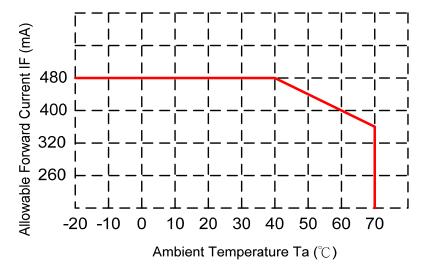
4.5 Backlight Driving Conditions

Item	Symbol	Values			Unit	Note
Item	Symbol	Min.	Тур.	Max.	Onit	Note
LED Driver voltage	VLED	9	12	15	V	
Power Supply Current For LED Driver	ILED	1	1000	-	mA	VLED=12V VADJ=3.3V (duty 100%)
ADJ Input Voltage	V_{ADJ}	-	3.3	VLED	V	duty=100%
LED voltage	VAK	1	21	24.6	V	I _L =480mA Ta=25°ℂ
LED current	ΙL		480		mA	Note (1)
LED Life Time	-		50K		Hour	Note (2)

Note (1): The constant current source is needed for white LED back-light driving. When LCM is operated over 60 deg.C ambient temperature, the I_L of the LED back-light should be adjusted to 400mA max

8

Note2 : Condition: Ta=25°C, continuous lighting


Life time is estimated data.

Definitions of failure:

Date: 2012/04/16

- 1. LCM brightness becomes half of the minimum value.
- 2. LED doesn't light normally.

When LCM is operated over 40°C ambient temperature, the ILED should be follow:

5. OPTICAL SPECIFICATION

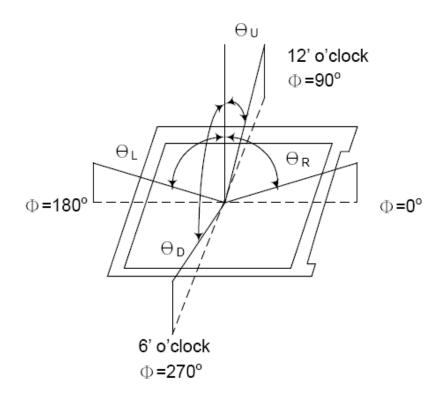
5.1 Optical specification

Itama	Cumbal	Condition	Values			11:4:4	Note	
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	θ L		60	70				
Viowing angle	θR	(CD>10)	60	70		dograa	Note1	
Viewing angle	θU	(CR≧10)	60	70		degree	Note2	
	θD		40	50				
Response time	TR			5	7	msec	Note3	
Response time	TF			20	28	msec	Notes	
Contrast ratio	CR		400	500			Note2	
	WX		0.26	0.31	0.36			
	WY		0.28	0.33	0.38			
	RX		0.54	0.59	0.64			
Color obversatioit.	RY	Normal <i>θ</i> =Φ=0°	0.28	0.33	0.38		Note1	
Color chromaticity	GX	$\theta = \Psi = 0$	0.29	0.34	0.39		Note4	
	GY		0.54	0.59	0.64			
	BX		0.11	0.16	0.21			
	BY		0.05	0.1	0.15			
Luminance	L		800	1000		cd/m ²	Note4	
Luminance uniformity	YU		70			%	Note5	

5.2 Measuring Condition

■ Measuring surrounding : dark room

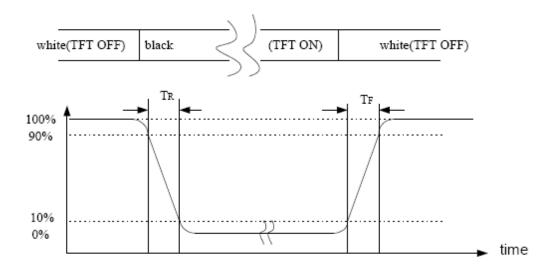
■ Ambient temperature : 25±2°C

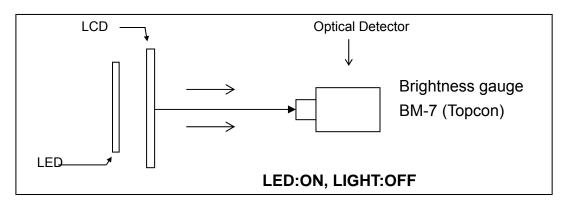

■ 15min. warm-up time

Date: 2012/04/16

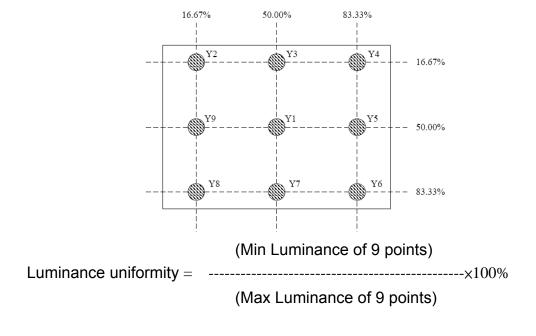
5.2 Measuring Equipment

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7 of view : 1° / Height : 120mm.)

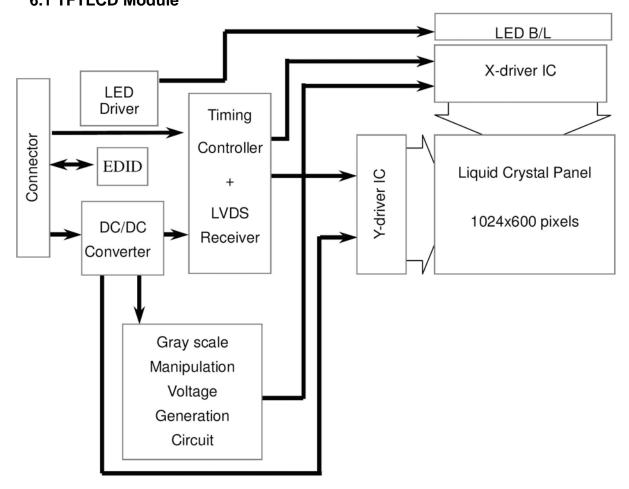

Note 1 : Definition of viewing angle range


Note 2 : Definition of Contrast Ratio (CR) : measured at the center point of panel

Date: 2012/04/16


Note 3 : Definition of Response time : Sum of T_R and T

Note 4: Definition of optical measurement setup



Note 5: Definition of brightness uniformity

- Note 6 : Rubbing Direction (The different Rubbing Direction will cause the different optima view direction
- Note 7 : Condition: Ta=25 $^{\circ}$ C, Life time is estimated data. Definitions of failure:
 - i. LCM brightness becomes half of the minimum value.
 - ii. LED doesn't light normally.

6. BLOCK DIAGRAM 6.1 TFTLCD Module

6.2 Pixel format

7.INTERFACE

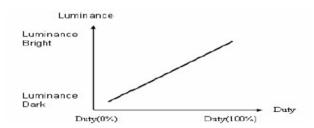
7.1 Electrical Interface Connection

CN1(Input signal): CSTAR DS100-430-H23 (equivalent JAE FI-XB30SSRL-HF16)

Pin No.	Symbol	Description	Note
1	GND	Ground	
2	VDD	3.3V Power	
3	VDD	3.3V Power	
4	V_EDID	3.3V Power for EDID	
5	NC	No connection	
6	CLK_EDID	EDID Clock Input	
7	DATA_EDID	EDID Data Input	
8	RXIN0-	LVDS Signal - channel0-	
9	RXIN0+	LVDS Signal+ channel0+	
10	GND	Ground	
11	RXIN1-	Data Input channel1-	
12	RXIN1+	Data Input channel1+	
13	GND	Ground	
14	RXIN2-	Data Input channel2-	
15	RXIN2+	Data Input channel2+	
16	GND	Ground	
17	RXCLKIN-	Data Input CLK-	
18	RXCLKIN+	Data Input CLK+	
19	GND	Ground	
20	NC	No connection	
21	NC	No connection	
22	GND	Ground	
23	GND	Ground	
24	NC	No connection	

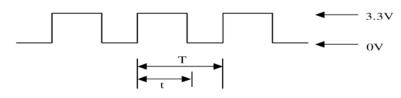
25	NC	No connection
26	NC	No connection
27	NC	No connection
28	NC	No connection
29	NC	No connection
30	NC	No connection

CN2(LED backlight): BHSR-02VS-1 (JST or equivalent)

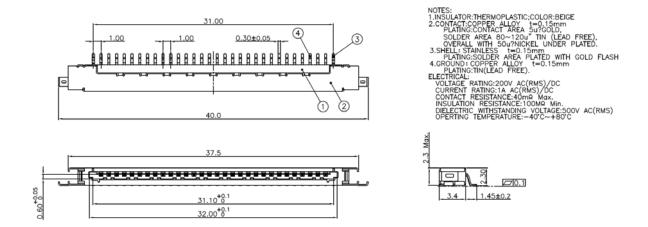

Pin No.	Symbol	Description	Note
1	А	Anode for LED backlight (+21V, 480mA)	
2	K	Cathode for LED backlight	

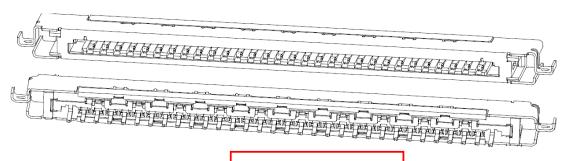
CN2(LED Driver Board): FPHTI-104TTW000(Kingfont or equivalent)

Pin No.	Symbol	Description	Note
1	+12V	Voltage for LED circuit (+12V)	
2	LED_EN	LED BLU ON/OFF	
3	GND	Power ground	
4	PWM	Adjust the LED brightness by PWM	

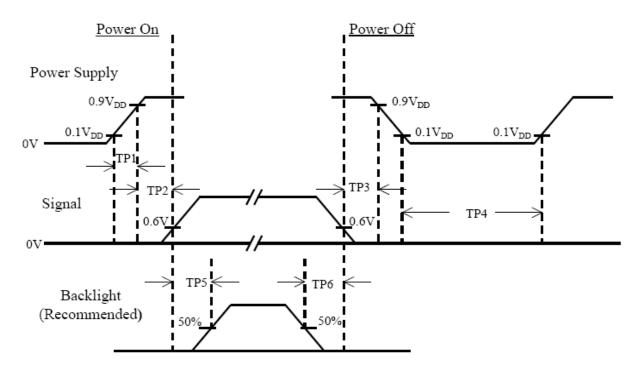

Note* : The brightness of LCD panel could be changed by adjusting ADJ

[Note] (1) ADJ can adjust brightness to control Pin. Pulse duty the bigger the brighter.


(2) ADJ Signal=0~3.3V , Operation Frequency :


Dimming Range		
PWM Frequency (F)	Duty Cycle (Min.)	Duty Cycle (Max.)
100Hz < F < 500Hz	5%	100%
500Hz < F < 20KHz	10%	100%

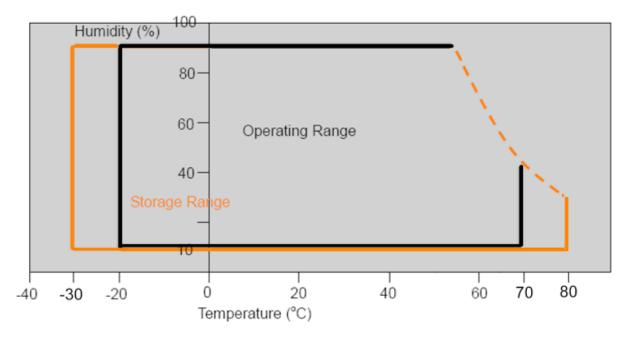
Duty Cycle = t / T *100%


(3) LVDS Connector: CSTAR DS100-430-H23

DS100-430-H23 BOTTOM MOUNT

8. Power On/Off Sequence

Item	Min.	Тур.	Max.	Unit	Remark
TP1	0.5		10	msec	
TP2	0		50	msec	
TP3	0		50	msec	
TP4	500			msec	
TP5	200			msec	
TP6	200			msec	


Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the back-light turns on before the LCD operation or the LCD turns off before the back-light turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signal on the low or keep a high impedance.
- (4) TP4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

9. RELIABILITY TEST CONDITIONS

Item	Test Conditions	Note
High Temperature Storage	Ta = 80°C 240 hrs	
Low Temperature Storage	Ta = -30°C 240 hrs	
High Temperature Operation	Ts = 70°C 240 hrs	
Low Temperature Operation	Ta = -20°C 240 hrs	
Thermal Shock	-30°C /30 min ~ +80°C /30 min 100 cycles	

Storage / Operating temperature

Note .Max wet bulb temp.=39_oC

10.INCOMING INSEPCTION STANDARDS

10.1. Scope

Specifications contain

- 10.1.1 Display Quality Evaluation
- 10.1.2 Mechanics Specification

10.2. Sampling Plan

Unless there is other agreement, the sampling plan for incoming inspection shall follow MIL-STD-105E LEVEL II.

- 10.2.1 Lot size: Quantity per shipment as one lot (different model as different lot).
- 10.2.2 Sampling type: Normal inspection, single sampling.
- 10.2.3 Sampling level: Level II.
- 10.2.4 AQL: Acceptable Quality Level

Major defect: AQL=0.65 Minor defect: AQL=1.0

10.3. Panel Inspection Condition

10.3.1 Environment:

Room Temperature: 25±5°C.

Humidity: 65±5% RH.

Illumination: 300 ~ 700 Lux.

10.3.2 Inspection Distance:

35-40 cm

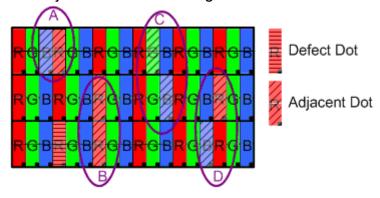
10.3.3 Inspection Angle:

The vision of inspector should be perpendicular to the surface of the Module.

10.3.4 Inspection time:

Perceptibility Test Time: 20 seconds max.

10.4. Display Quality

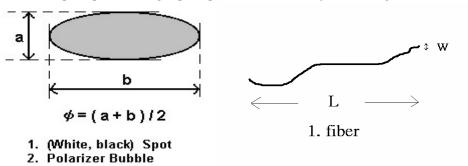

10.4.1 Function Related:

The function defects of line defect, abnormal display, and no display are considered Major defects.

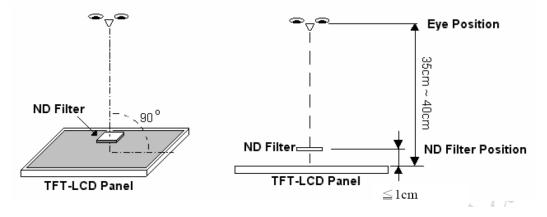
10.4.2 Bright/Dark Dots:

Defect Type / Specification	G0 Grade	A Grade	
Bright Dots	0	N≤3	
Dark Dots	0	N≤4	
Total Bright and Dark Dots	0	N≤6	

[Note 1]
Judge defect dot and adjacent dot as following.


- (1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)
- (2) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
- (3) Allow above (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.
- (4) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.
- (5) There should be no distinct non-uniformity visible through 3% ND Filter within 2 sec inspection times.

10.4.3 Visual Inspection specifications:


Defect Type	Specification	Count(N)
Dot Shape	D 0.25mm	Ignored
(Particle、Scratch and Bubbles in	0.25mm < D 0.5mm	N≤3
display area)	D > 0.5mm	N=0
Line Shape	W 0.07mm	Ignored

(Particles、Scratch、Lint and	0.07mm <w< th=""><th>0.1mm,L</th><th>5mm</th><th>N≤3</th></w<>	0.1mm,L	5mm	N≤3
Bubbles in display area)	W > 0.1mm ,	L > 5mm		N=0

[Note 2] W : Width[mm], L : Length[mm], N : Number, $\,\phi$: Average Diameter

[Note 3] Bright dot is defined through 3% transmission ND Filter as following.

11. HANDLING & CAUTIONS

11.1 Cautions when taking out the module

Pick the pouch only, when taking out module from a shipping package.

11.2 Cautions for handling the module

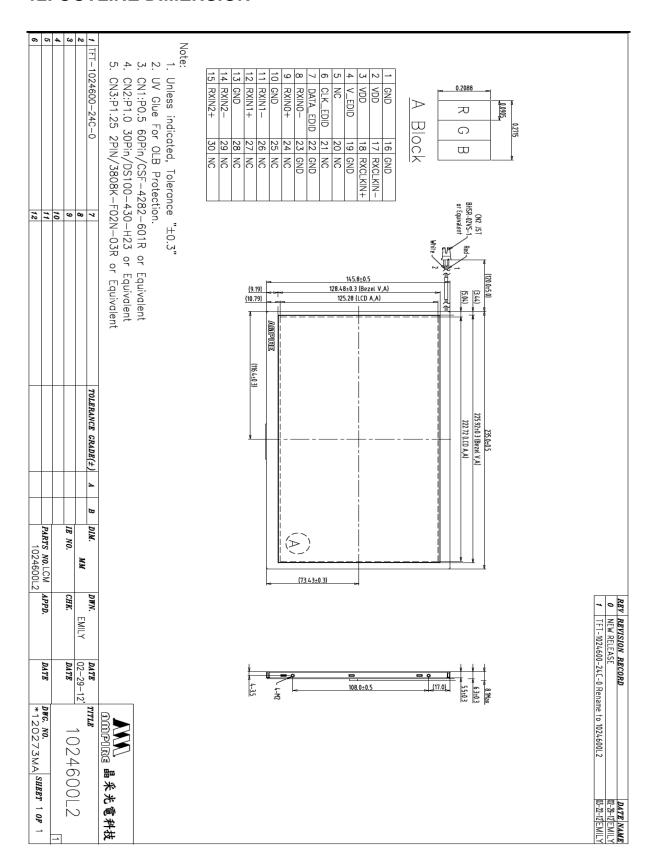
- 11.2.1 As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- 11.2.2 As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- 11.2.3 As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- 11.2.4 Do not pull the interface connector in or out while the LCD module is operating.
- 11.2.5 Put the module display side down on a flat horizontal plane.
- 11.2.6 Handle connectors and cables with care.

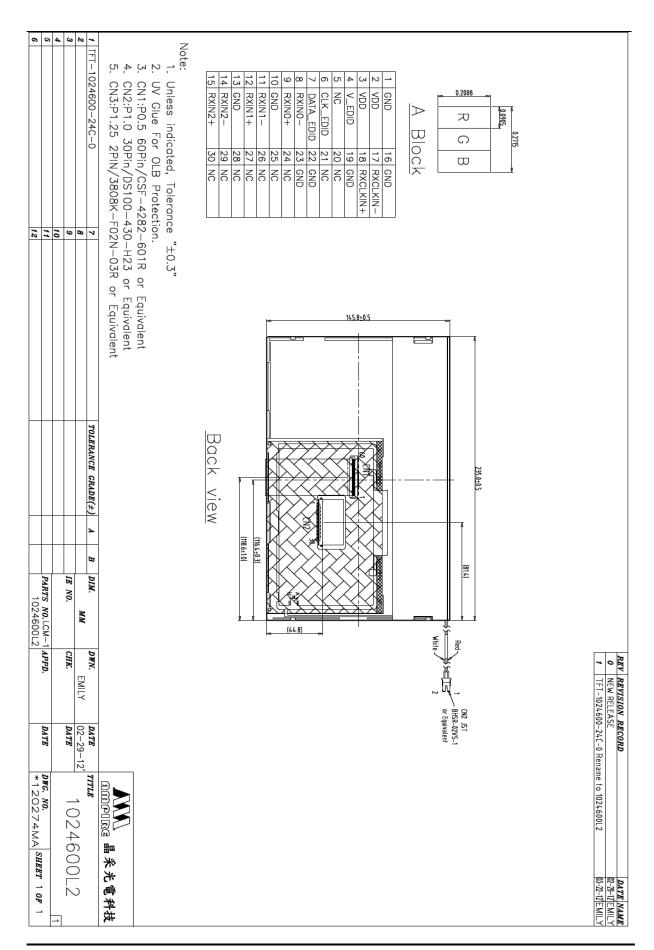
11.3 Cautions for the operation

- 11.3.1 When the module is operating, do not lose MCLK, DE signals. If any one of these signals were lost, the LCD panel would be damaged.
- 11.3.2 Obey the supply voltage sequence. If wrong sequence were applied, the module would be damaged.

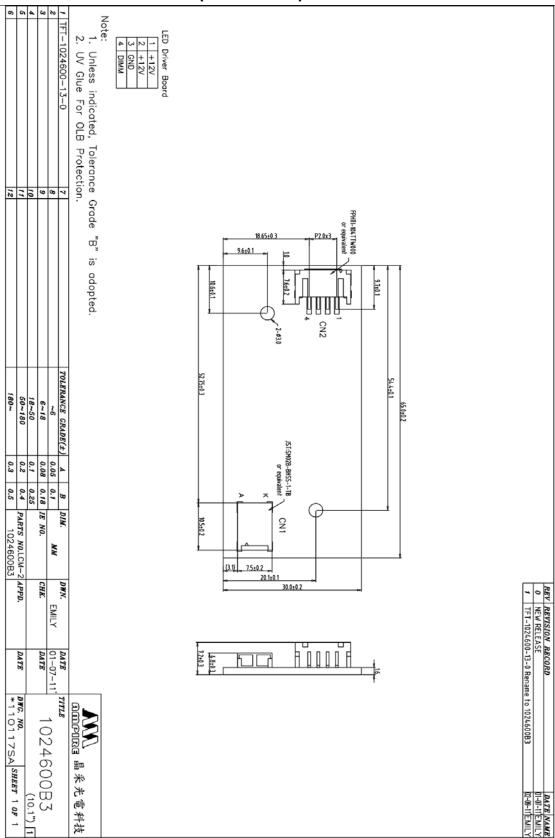
11 .4 Cautions for the atmosphere

- 11.4.1 Dewdrop atmosphere should be avoided.
- 11.4.2 Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer-packing pouch and under relatively low temperature atmosphere is recommended.


11.5 Cautions for the module characteristics


- 11.5.1 Do not apply fixed pattern data signal to the LCD module at product aging.
- 11.5.2 Applying fixed pattern for a long time may cause image sticking.

11.6 Other cautions


- 11.6.1 Do not disassemble and/or re-assemble LCD module.
- 11.6.2 Do not re-adjust variable resistor or switch etc.
- 11.6.3 When returning the module for repair or etc, please pack the module not to be broken. We recommend using the original shipping packages.
- 11.6.4 AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

12. OUTLINE DIMENSION

OUTLINE DIMENSION (LED driver)

