

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-480640BTZQW-A0
APPROVED BY	
DATE	

- ☑ Approved For Specifications
- ☐ Approved For Specifications & Sample

AMPIRE CO., LTD.

Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist, New Taipei City 221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2016/06/27	-	New Release	Mark

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

1. PHYSICAL SPECIFICATIONS

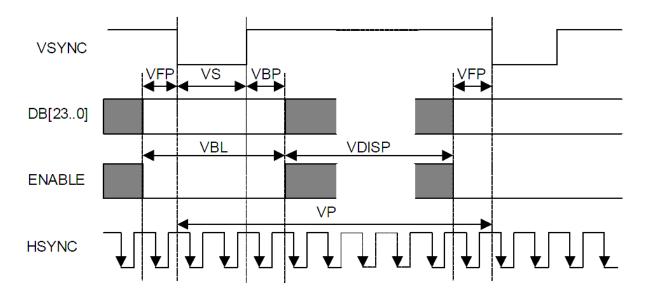
Item	Specifications	Remark
LCD size	3.5 inch(Diagonal)	
Driver IC	HX8363A	
Display resolution	480 (W) × 3(RGB) x 640(H) dots	
Interface	LVDS	
Pixel pitch	0.0372 x0.1116 mm	
Active area	53.568 (W) x 71.424 (H) mm	
Module size	61.8 (W) x 88.5 (H) × 9.6 (D) mm	
Display Mode	AIFF/Transmissive/Normally Black	
Color arrangement	RGB vertical stripe	
Viewing Direction	Wide viewing	
Luminance	500	
Weight	TBD	

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

2. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit
Supply Voltage	VCC	-0.3	4.6	V
Operating Temperature	Тор	-10	60	°C
Storage Temperature	T_{ST}	-20	70	°C
Storage Humidity	HD	20	90	%RH

Date: 2016/06/27 AMPIRE CO., LTD.


4

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

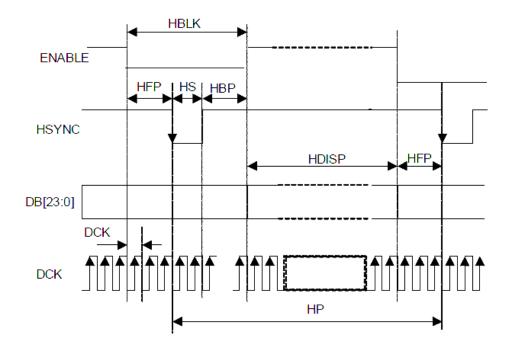
3. Timing Characteristics

3.1 RGB Interface Timing Characteristics

Vertical Timings for RGB I/F

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Vertical cycle	VP		646	-	650	Line
Vertical low pulse width	VS (- 5)	2	-	4	Line
Vertical front porch	VFP		2	-	4	Line
Vertical back porch	VBP	- ((())	2	-	4	Line
Vertical data start point	77	VS+VBP	4	-	8	Line
Vertical blanking period	VBL	VS+VBP+VFP	6	-	10	Line
Vertical active area	<i>y</i> -	VDISP	-	640	-	Line
Vertical Refresh rate	VRR	-))	50	-	70	Hz

Note: (1) Signal rise and fall times are equal to or less than 20 ns.


Date: 2016/06/27

⁽²⁾ Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state.
(3) Data lines can be set to "High" or "Low" during blanking time – Don't care.

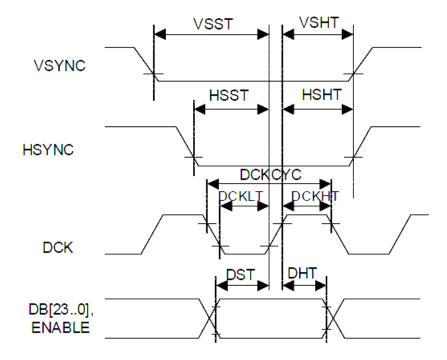
⁽⁴⁾ VRR must keep from 50Hz to 70Hz when adjust other items

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

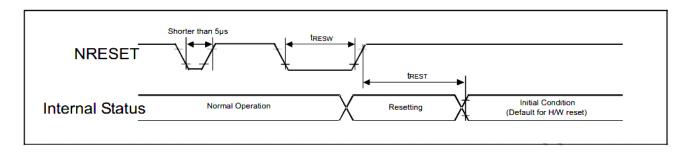
Horizontal Timings for RGB I/F

Item	Sym bol	Condition	Min.	Тур.	Max.	Unit
HS cycle	THP C	Note 3	504	-	568	DCK
HS low pulse width	HS		5	-	78	DCK
Horizontal back porch	HBP	? -	5	-	78	DCK
Horizontal front porch	(HFP)	-	5	-	78	DCK
Horizontal data start point		HS+HBP	19	-	83	DCK
Tionzonial data stare point		TIO TIBI	700	-	-	ns
Horizontal blanking period	HBLK	HS+HBP+HFP	24	-	88	DCK
Horizontal active area	HDISP	-	-	480	-	DCK
Pixel clock frequency	DCK	VRR = Min. 50 Hz	21.6	-	34.3	MHz
When RGB I/F is running	DOIL	– Max. 70 Hz	29.1	-	46.2	ns

Note: (1) Signal rise and fall times are equal to or less than 20 ns.


Date: 2016/06/27

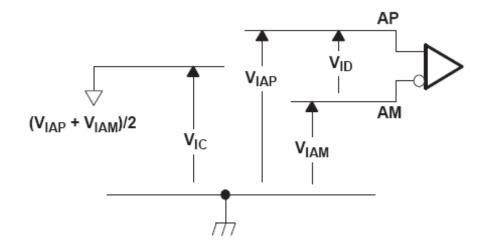
⁽²⁾ Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state. (3) HP is multiples of eight DCK.


⁽⁴⁾Data lines can be set to "High" or "Low" during blanking time - Don't care.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

General Timings for RGB I/F

3.2 Reset Timing Characteristics

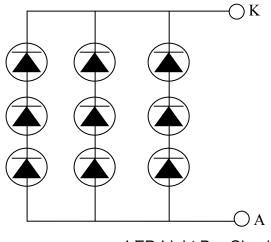

Symbol	Parameter	Related pins	Min.	Тур.	Max.	Note	Unit
t _{RESW}	Reset low pulse width ⁽¹⁾	NRESET	10	-	-	-	μs
	Reset complete time ⁽²⁾	-	5	-	-	When reset is applied during Sleep In mode	ms
t _{REST}	Reset complete time	-	120	-	-	When reset is applied during Sleep Out mode	ms

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

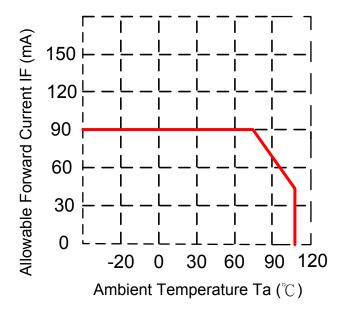
4. ELECTRICAL CHARACTERISTICS

4.1 LVDS input

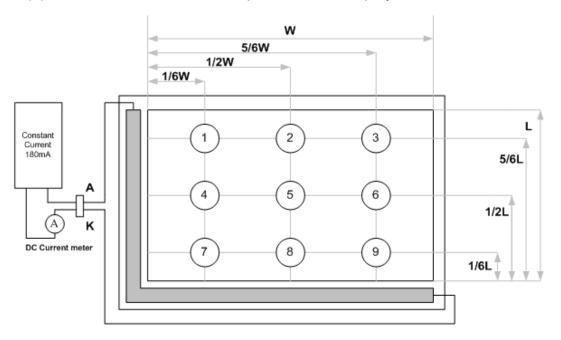
		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
Icc	Current of Supply voltage	,	100		MΑ
V_{IH}	High-level input voltage (SHTDN)	2			V
V_{IL}	Low-level input voltage (SHTDN)			0.8	٧
$ V_{ID} $	Magnitude differential input voltage	0.1		0.6	V
V _{IC}	Common-mode input voltage	V _{ID} 2		$2.4-\frac{ V_{\hbox{\scriptsize ID}} }{2}$	٧


Date: 2016/06/27

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


5. Backlight Unit

Item	Symbol	Min.	Тур.	Max.	Unit	Note
LED Driver Power Voltage	V_{LED}	5		7.5	V	
LED Driver Current	l	151		194	mA	V _{LED} =5V V _{ADJ} =3.3V (duty 100%)
Consumption	I _{LED}	100		125	mA	V _{LED} =7.5V V _{ADJ} =3.3V (duty 100%)
ADJ signal frequency	fрwм	10		100	kHz	
ADJ signal logic level High	VIH	2V		V_{LED}	V	
ADJ signal logic level Low	VIL	0		0.4	V	
LED voltage	V _{AK}	8.4		10.8	V	I _{LED} 90mA Ta=25°C
LED current	I_{AK}		90		mA	Ta=25°ℂ
LED Life Time	-		50K		Hour	Note (1)
Luminance uniformity			80		%	Note (2)


Note (1) Brightness to be decreased to 50% of the initial value.

LED Light Bar Circuit

Note (2): Luminance is measured at point 5 of the display.

Note 6: Definition of Luminance Uniformity

 $\Delta L = [L (min.) of 9 points / L (max.) of 9 points] X 100%$

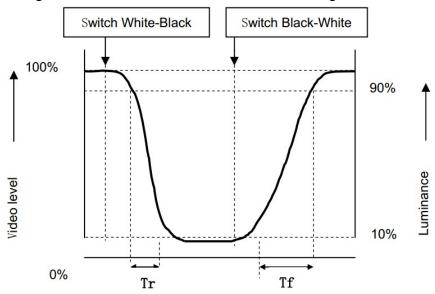
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

6. Interface

PIN NO.	PIN NAME	DESCRIPTION
1	VCC	Power supply
2	VCC	Power supply
3	GND	Ground
4	GND	Ground
5	RXIN0-	-LVDS differential data input
6	RXIN0+	+LVDS differential data input
7	GND	Ground
8	RXIN1-	-LVDS differential data input
9	RXIN1+	+LVDS differential data input
10	GND	Ground
11	RXIN2-	-LVDS differential data input
12	RXIN2+	+LVDS differential data input
13	GND	Ground
14	CLK-	-LVDS differential data input
15	CLK+	+LVDS differential data input
16	GND	Ground
17	VLED	LED Power Supply
18	VLED	LED Power Supply
19	GND	Ground
20	ADJ	PWM Signal for LED Dimming Control

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7. Optical Specifications

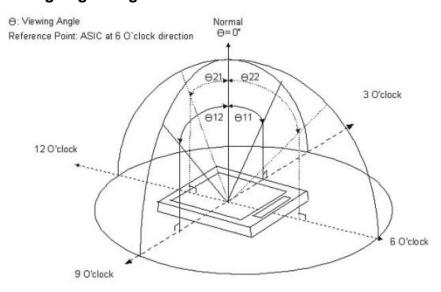

Item		C11	Sp	ecificatio	ns	T T :4	NI-4-
		Symbol	Min.	Typ.	Max.	Unit	Note
Contrast	ratio	Cr (Θ=0°)	-	300	-		
Response (25°C		$T_r + T_f$	-	30	50	ms	Note1
		Θ21	60	80	-		110101
Viewing a	angle	Θ22	60	80	-	doo	
(Cr≥ 10))*	Θ12	60	80	-	deg	
		Θ11	60	80	-		
		X		0.643			
	Red	у		0.333			
Chromoticity		X		0.304			
Chromaticity of LCM	Green	у	-0.05	0.578	+0.05		
OI LCIVI		X	-0.03	0.141	10.03		Chromaticity
	Blue	у		0.137			measuring
		X		0.314			machine: CFT-01.
	White	у		0.346			Reference Only
Color gamu (NTSC		S		58.2		%	
Luminance		L	400	500	-	Cd/m2	
Lumina uniform		-	-	80	-	%	

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.1 Definitions and measuring methods

[1] Response Time(Tr, Tf)

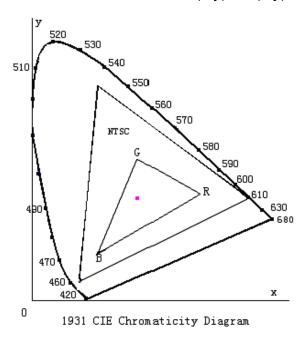
The rise time 'Tr' is defined as the time for luminance to change from 90% to 10% as a result of a change of the electrical condition. The fall time 'Tf' is defined as the time for luminance to change from 10% to 90% as a result of a change of the electrical condition.


[2] Contrast ratio (Cr)

The contrast ratio (Cr), measured on a module, is the ratio between the luminance (L_w) in a full white area (R=G=B=1) and the luminance (L_d) in a dark area (R=G=B=0):

$$Cr = \frac{L - w}{L d}$$

13


[3] Viewing angle diagram

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

[4] Definition of color gamut

Measuring machine:CFT-01. NTSC'S Primaries: $R(x,y) \setminus G(x,y) \setminus B(x,y)$.

CIE chromaticity diagram

Color gamut: $S = \frac{\text{Area of RGB triangle}}{\text{Area of NTSC triangle}} \times 100\%$

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

8. Reliability Test Items

Test Item	Test Conditions	Note
High Temperature Operation	60±3°C , t=120 hrs	
Low Temperature Operation	-10±3°C , t=120 hrs	
High Temperature Storage	70±3°C , t=120 hrs	1,2
Low Temperature Storage	-20±3°C , t=120 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 120 hrs	1,2
Thermal Shock Test	-20°C (30min) ~ 70°C (30min) 50 cycles	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35 $^{\circ}\text{C}$, 45-65 $^{\circ}\text{RH}$).

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

9. Handling Precautions

9.1 Mounting method

The LCD panel of SC LCD module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

9.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns

Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI), Salfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Salfur (S) from customer, Responsibility is on customer.

9.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

9.4 Packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

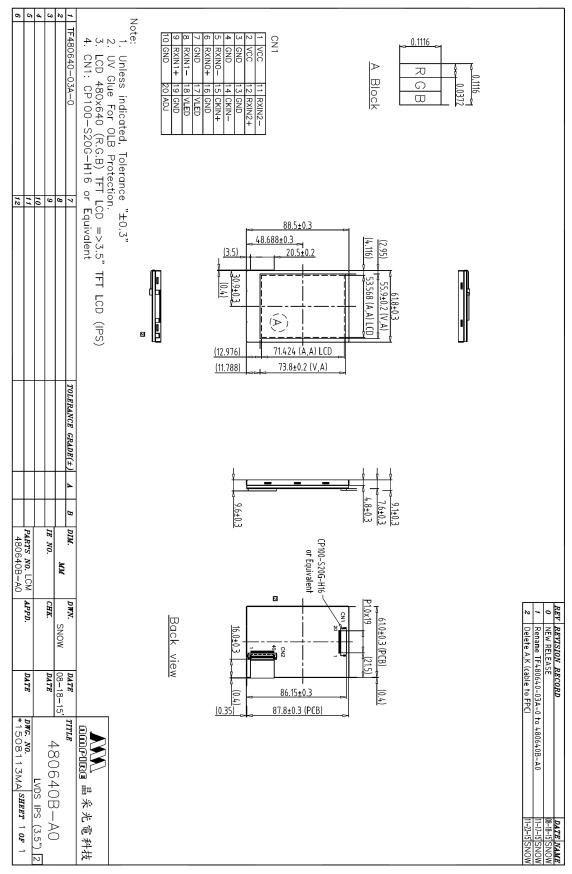
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

9.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature, 50%Rh or less is required.
- Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

9.6 Storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.


- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.
 [It is recommended to store them as they have been contained in the inner container at the time of delivery from us]

9.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water
- Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

10. OUTLINE DIMENSION

